Деление истории земли на эры и периоды. Основные этапы эволюции живого мира Этапы эволюции жизни

Большинство современных ученых считают, что Земля сформировалась немногим ранее 4,5 млрд. лет назад. Жизнь на ней возникла относительно быстро. Самые ранние остатки вымерших микроорганизмов найдены в отложениях кремнезема, имеющих возраст 3,8 млрд. лет (см. Жизнь и её происхождение).

Первыми обитателями Земли были прокариоты - организмы без оформленного ядра , похожие на современных бактерий . Они были анаэробами , т. е. не использовали для дыхания свободный кислород , которого еще не было в атмосфере . Источником пищи для них были органические соединения, возникшие еще на безжизненной Земле в результате действия ультрафиолетового солнечного излучения, грозовых разрядов и тепла вулканических извержений. Другим источником энергии для них были восстановленные неорганические вещества (сера , сероводород, железо и т. д.). Сравнительно рано возник и фотосинтез . Первыми фотосинтетиками были также бактерии , но они использовали в качестве источника ионов водорода (протонов) не воду, а сероводород или органические вещества . Жизнь тогда была представлена тонкой бактериальной пленкой на дне водоемов и во влажных местах суши. Эту эру развития жизни называют архейской, древнейшей (от греческого слова ἀρχαῖος - древний).

В конце архея произошло важное эволюционное событие. Около 3,2 млрд. лет назад одна из групп прокариот - цианобактерии выработала современный, оксигенный механизм фотосинтеза с расщеплением воды под действием света. Образующийся при этом водород соединялся с углекислым газом, и получались углеводы , а свободный кислород поступал в атмосферу. Атмосфера Земли постепенно становилась кислородной, окислительной. (Не исключено, что значительная часть кислорода могла выделяться из горных пород, когда формировалось металлическое ядро Земли.)

Все это имело важные последствия для жизни. Кислород в верхних слоях атмосферы под действием ультрафиолетовых лучей превратился в озон. Озоновый экран надежно защитил поверхность Земли от жестокого солнечного излучения. Стало возможным возникновение кислородного дыхания , энергетически более выгодного, чем брожение , гликолиз , а следовательно, и возникновение более крупных и более сложно устроенных эукариотических клеток . Возникли сначала одноклеточные, а затем и многоклеточные организмы. Кислород сыграл и отрицательную роль - все механизмы связывания атмосферного азота подавляются им. Поэтому азот атмосферы связывают до сих пор бактерии -анаэробы и цианобактерии. От них практически зависит жизнь всех остальных организмов на Земле, возникших позже, уже в кислородной атмосфере.

Цианобактерии наряду с бактериями были широко распространены на поверхности Земли в конце архея и последующей эре - протерозойской, эре первичной жизни (от греческих слов πρότερος - более ранний и ζωή - жизнь). Известны образованные ими отложения - строматолиты («ковровые камни»). Как источник углекислоты эти древние фотосинтетики использовали растворимый бикарбонат кальция. При этом нерастворимый карбонат оседал на колонии известковой коркой. Строматолиты во многих местностях образуют целые горы , однако остатки микроорганизмов сохранились лишь в некоторых из них.

Несколько позже симбионтами каких-то первых эукариот стали цианобактерии - предки хлоропластов. Остатки первых несомненных эукариот - простейших и колониальных водорослей - найдены в отложениях протерозойской эры. Они похожи на вольвоксов.

В следующем, девонском периоде (от названия графства в Великобритании), длившемся около 60 млн. лет, разнообразные папоротникообразные вытеснили псилофитов, а рыбы, у которых передняя пара жаберных дуг превратилась в челюсти, - бесчелюстных. В девоне появились уже основные группы рыб - хрящевые , лучеперые и лопастеперые. Некоторые из последних в конце девона вышли на сушу, дав начало большой группе земноводных.

Кайнозой начинается с третичного периода. Ранний третичный, или палеогеновый, период включает эпохи: палеоцен, эоцен и олигоцен, которые длились 40 млн. лет. В это время возникли все ныне живущие отряды млекопитающих и птиц . Наибольшего расцвета новая жизнь достигла в начале неогенового периода, в миоценовую эпоху, наступившую 25 млн. лет назад. Тогда же появились первые человекообразные обезьяны. Сильное похолодание в конце следующей эпохи, плиоцена, привело к вымиранию теплолюбивой флоры и фауны на больших пространствах Евразии и Северной Америки. Около 2 млн. лет назад наступает последний период истории Земли - четвертичный. Это период становления человека, поэтому его чаще называют антропогеном.

Архейский эон

Земля - единственная планета Солнечной системы, на которой сформировались условия, благоприятные для возникновения и развития жизни. Жизнь на Земле зародилась на дне теплых мелких морей катархея, где образовались сложные полимеры, способные синтезировать белки, обеспечивающие им достаточно длительное самосохранение. Эволюция этих первичных микроорганизмов породила в них способность синтезирования органических молекул из неорганических. Наиболее эффективным способом оказался фотосинтез - продуцирование органического вещества из углекислоты и воды.

Первыми фотосинтезирующими растениями были, по-видимому, микроскопические синезеленые водоросли и бактерии. Эти организмы отличались отсутствием ядра и получили название прокариоты (Procaryota - доядерные) и особым положением ДНК, которая располагается в клетках свободно, не отделяясь от цитоплазмы ядер-ной мембраной. Все остальные организмы имеют ядро, окруженное мембраной и резкоограниченное от цитоплазмы. Такие организмы называются эукариотами (Eycaryota - ядерные).

Наиболее древние достоверные следы жизнедеятельности организмов, называемых строматолитами, обнаружены в Австралии, их возраст 3,5 млрд лет, а также найдены в кремнистых сланцах серии Фигового дерева системы Свазиленд (Барбетон) в Трансваале, возраст которых 3,1-3,4 млрд лет. Почти столь же древними (более 2,9 млрд лет) являются обызвествленные продукты жизнедеятельности синезеленых водорослей - неприкрепленные округлые образования - онколиты (строматолиты - прикреплены ко дну). Архейский эон - это время прокариотов - бактерий и синезеленых водорослей, единственных следов жизни далекого прошлого. Он начался 4,5 млрд лет и закончился 2,6 млрд лет назад.

Протерозойский эон

Протерозойский эон разделяют рубежом в 1650 млн лет на ранний протерозой и поздний протерозой, который называют рифеем. В раннем протерозое были развиты в основном прокариоты - синезеленые водоросли, следы жизнедеятельности которых в виде строматолитов и онколитов известны уже во многих районах мира. На рубеже в 2 млрд лет, в середине раннего протерозоя, уровень кислорода в атмосфере, по-видимому, приблизился к современному, о чем свидетельствует формирование самых крупных в геологической истории месторождений железа, для образования которого, как известно, понадобился свободный кислород, переводящий закисные формы железа в окисные, что понижало подвижность железа и приводило к массовому выпадению в осадок взвеси гидратов окиси железа в комплекс SiO2 * nН2О, преобразовавшегося затем в железистые кварциты-джеспилиты. Это крупнейшие месторождения железа Криворожского бассейна и Курской магнитной аномалии в России, Верхнего озера в Северной Америке и в Индии.

По данным Р.Э. Фолинсби, заметные качества свободного кислорода появились около 2,2 млрд лет назад. В рифее продуцирование свободного кислорода водорослями все возрастало: обилие водорослевых построек позволяет выделить в нем несколько подразделений.

Эволюция сделала следующий шаг - появились организмы, потребляющие кислород. В породах верхнего и среднего рифея найдены следы роющих животных и трубочки червей. В вендском периоде, верхах верхнего рифея обилие и уровень развития организмов приближает их уже к фанерозою. В отложениях венда обнаружены многочисленные отпечатки разнообразных бесскелетных животных: губки, медузы, кольчатые черви, членистоногие. Их остатки представлены отпечатками мягких тканей.

Фанерозойский эон

Палеозойская эра, охватывающая более половины фанерозоя, длилась более 340 млн лет и подразделяется на два крупных этапа: раннепалеозойский, начавшийся еще в позднем рифее и венде, состоящий из кембрийского ордовикского и силурийского периодов, и позднепалеозойский, включающий девонский, каменноугольный и пермский периоды.

Кембрийский период продолжался 90 млн лет и делится на три эпохи. Его нижняя граница проходит на рубеже 570 млн лет, а верхняя - 480 млн лет (по новым данным). Органический мир кембрия отличается значительным разнообразием: наиболее широко были развиты археоциаты, брахиоподы, трилобиты, граптолиты, губки, конодонты. Особенно быстро эволюционировали трехчленистые формы трилобитов, которые уже обладали известковым панцирем и научились сворачиваться, защищая мягкое брюшко. Возникло большое количество их руководящих форм, что позволило детально расчленять кембрийские отложения. Кембрийские брахиоподы, имевшие хитино-фосфатные раковины, были примитивными, беззамковыми. Важной группой для расчленения и корреляции отложений являются граптолиты. В настоящее время для кембрия известно более 100 видов животных и водорослей.

Ордовикский период продолжался 4 млн лет и делится на три эпохи. В это время морские бассейны занимали наибольшую площадь в фанерозое, поэтому продолжался бурный расцвет морской фауны и флоры. Максимального развития достигают трилобиты и граптолиты. Возникают четырехлучевые кораллы, пелециподы и первые головоногие - эндоцератиты. Среди брахиопод появляются замковые разновидности и количество их родов достигает 200. В это же время появляются стебельчатые иглокожие: морские лилии, бластоидеи, цистоидеи, криноидеи. Важную роль для стратиграфии приобретают конодонты. В ордовике (а возможно, еще в кембрии) появляются так называемые панцирные рыбы - небольшие рыбообразные донные животные без челюстей и плавников, покрытые панцирем из толстых пластинок на голове и чешуй на туловище. В конце ордовика местами на Земле наблюдалось достаточно обширное оледенение.

Силурийский период длился 30 млн лет и разделяется на две эпохи. Моря вновь расширяют свои площади, что возможно связано с окончанием оледенения и таянием ледников. Возникшие ранее группы организмов продолжают развиваться за исключением эндоцератит, вымирающих к началу периода, и цистоидей, исчезающих в его середине. Появились уже настоящие хрящевые рыбы - сначала панцирные, а затем беспанцирные акулы, проживающие и в настоящее время. От огромных хищных жабродышащих (класса ракообразных) гигантостраков произошли первые сухопутные животные, похожие на современных скорпионов, у которых сформировались легкие. В позднем силуре появились первые наземные высшие растения - псилофиты. Таким образом, самым знаменательным событием раннего палеозоя является появление скелетной фауны и «выхода» представителей растительного и животного мира на сушу.

Девонский период длился 55 млн лет и делится на три эпохи. Главное событие этого периода - «выход» на сушу многих представителей животного и растительного мира. В раннем девоне резко сокращается видовое разнообразие трилобитов, исчезают граптолиты, некоторые классы иглокожих. Появляется много руководящих форм замковых брахиопод. С раннего девона широко распространяются аммоноидеи, четырехлучевые кораллы, крупные фораминиферы, прикрепленные иглокожие (морские лилии). Широкое развитие получили уже настоящие костистые рыбы, давшие три различные ветви: лучеперые, двоякодышащие и кистеперые.

С девона начинается рассвет органического мира на суше: появляются крупные скорпионы и первые земноводные животные (амфибии). Их называют стегоцефалами, т. е. панцирноголовыми, так как их голова была покрыта защитными костными пластинками. В среднем девоне возникают многие группы высших растений: членистостебельные, плауновидные, папоротники и голосеменные.

Каменноугольный период длился 65 млн лет и делится на три эпохи. Этот период отличается теплым влажным климатом, обусловившим пышный рассвет растительности, приуроченной к заболоченным участкам суши, в пределах которых образовались огромные массы торфа, постепенно превратившиеся в процессе углефикации в бурые, а затем и в каменные угли. Обширные леса состояли из фомадных деревьев высотой до 50 м - древовидных хвощей, плауновых, папоротников, лепидоденронов, сигиллярий, каламитов. В середине карбона появляются кордаиты, гингковые и хвойные.

В верхнем карбоне возникают первые рептилии - сеймурии и котилозавры, сохранившие сплошную крышку черепа, как и земноводные. Исчезают древние строматопоры, фаптолиты, трилобиты, бесчелюстные рыбообразные, панцирные рыбы, а из растений - псилофиты. В конце позднего карбона начинается оледенение.

Пермский период длился 55 млн лет и делится на две эпохи. Регрессия моря, начавшаяся в карбоне, все более увеличивается, что приводит к господству суши. Оледенение позднего карбона расширяется и охватывает южное полушарие. Климат северного полушария был засушливый, жаркий, в экваториальной зоне - влажный. В этот период тропическая фауна сменяется голосеменными растениями, преимущественно хвойными, появляются первые цикадовые. Все основные группы каменноугольной фауны и флоры продолжают жить в перми, но к концу пермского периода вымирают многие палеозойские организмы: четырехлучевые кораллы, основные виды брахиопод, мшанки, криноидеи, трилобиты, многие виды рыб, амфибии и др.; из растений - кордаиты, древовидные папоротники и плауновые, т. е. на рубеже палеозоя и мезозоя повсеместно происходила смена животного и растительного мира. Таким образом, поздний палеозой характеризуется крупными изменениями в органическом мире, что очерчивает четкую границу конца палеозойской эры.

Мезозойская эра. Триасовый период. Продолжительность мезозойской эры составляет 183 млн лет. Триасовый период продолжался 40 млн лет и делится на три этапа. На границе палеозойской и мезозойской эры произошло обновление органического мира. В раннем триасе господствовали континентальные условия, сменившиеся в среднем триасе обширной морской трансгрессией, которая достигла максимума в начале позднего триаса. Климат триаса был в основном теплым и сухим. Появились новые группы животных - аммониты, белемниты, пелециподы, шестилучевые кораллы. Наряду с беспозвоночными, быстро развиваются рептилии, особенно динозавры, давшие большое разнообразие различных форм; появились первые водные пресмыкающиеся: плезиозавры, плиозавры и ихтиозавры.

На суше в триасе появились первые млекопитающие - мелкие животные размером с крысу. Среди животных суши безраздельно господствовали рептилии, которые отличались огромными размерами и необычными формами (брахиозавры длиной до 24 м, диплодоки, бронтозавры достигали в длину 30 м, масса их составляла 35 т, а некоторых особей - до 80 т). Рептилии уже начинали осваивать и воздушное пространство. В США на западе штата Техас найдены остатки древней птицы, возраст которой составляет 225 млн лет, т. е. жившей в триасовый период.

Юрский период длился 69 млн лет и делится на три эпохи. Начало юрского периода характеризуется распространением континентального режима на древних докембрийских платформах. Co средней юры в результате опускания докембрийских платформ развиваются обширные трансгрессии, которые в позднеюрскую эпоху превратились в одну из величайших трансгрессий на земном шаре за счет формирования Атлантического и Индийского океанов. Климат юры считается теплым.

Среди представителей морской фауны появляются новые виды аммонитов, белемнитов. Продолжают развиваться гигантские динозавры, летающие ящеры и археорнисы, которые были величиной с ворону, имели зубастые челюсти, слабые крылья с когтями на концах и длинные хвосты с многочисленными позвонками, покрытые перьями. Среди богатой растительности были развиты папоротниковые, гинкговые и цикадовые.

Меловой период длился 70 млн лет (самый продолжительный после кембрийского периода) и делится на две эпохи. В начале мелового периода происходит развитие новых трансгрессий после кратковременной регрессии моря в конце юры. Продолжают развиваться все группы юрской фауны: шестилучевые кораллы, двухстворчатые моллюски с толстыми раковинами. Появляются гигантские аммониты, диаметр раковин которых достигает иногда 3 м. Широко развиваются белемниты, морские ежи, костистые рыбы. Появились крупные летающие ящеры с размахом крыльев до 8 м. Отмечено появление первых беззубых птиц.

В самом начале нижнемеловой эпохи еще продолжают существовать юрские формы растений, но в течение всего мелового периода происходят большие изменения в составе флоры. В конце нижнего мела значительную роль начинают играть покрытосеменные. А с самого начала верхнемеловой эпохи они уже занимают господствующее положение. Облик растительности начинает принимать современные формы: появляются ива, береза, платан, дуб, бук и настоящие цветковые растения.

В конце мелового периода происходит коренная перестройка органического мира. В морях исчезают аммониты и основные группы белемнитов, исчезли динозавры на суше, их летающие и плавающие формы. Вымирание динозавров осталось крупнейшим и драматическим событием в истории органического мира, о причинах которого высказано много гипотез.

В конце можно заметить, что изменение органического мира, по-видимому, связано с существенными преобразованиями в распределении континентов и океанов и своеобразием климатических особенностей.

Кайнозойская эра. Палеогеновый период. Продолжительность кайнозойской эры составляет 65 млн лет. Палеогеновый период продолжался 42 млн лет и подразделялся на три эпохи: палеоценовую, эоценовую и олигоценовую. В палеогеновый период очертания материков приближаются к современным. В начале палеоцена в результате нисходящих вертикальных движений начала развиваться трансгрессия моря, достигшая максимума к концу эоцена - началу олигоцена. В конце олигоцена со сменой знака вертикальных движений развивалась регрессия моря, которая привела к осушению платформ. В животном мире наблюдаются большие изменения. Исчезают белемниты, аммониты, наземные и морские рептилии. Среди простейших важную роль играют фораминиферы - нуммулиты, которые достигают крупных размеров. Широко были распространены шестилучевые кораллы, иглокожие. Костистые рыбы приобрели в морях главенствующее положение.

С начала палеогена из пресмыкающихся остались только змеи, черепахи и крокодилы, и началось распространение млекопитающих, сначала примитивных, а потом все более высокоорганизованных: первые парно- и непарнокопытные, хоботные и сумчатые. Появляются обезьяны, принимают современный облик птицы.

Растительность отличалась преобладающим распространением покрытосеменных, развитием флоры тропического климатического пояса в пределах средней Европы - пальм, кипарисов и умеренного климатического пояса с холоднолюбивой флорой - дубом, буком, платаном и хвойными, распространенными севернее.

Неогеновый период продолжался 21 млн лет и делится на две эпохи: миоцен и плиоцен. После установления континентального режима в пределах докембрийских платформ в конце олигоцена он сохранялся в течение всего неогена. В неогене в результате завершения альпийской складчатости образовался протяженный горноскладчатый пояс, который начинался от Гибралтарского пролива и завершился Памиром, Гиндукушем и Гималаями.

Образование высоких протяженных горных цепей способствовало усилению похолодания, начавшегося еще в олигоцене. В плиоцене усиливающееся похолодание вызвало образование сначала горно-долинных, а затем и покровных ледников. Появились ледники в Гренландии, Исландии, Канаде, на островах Арктического архипелага, в Скандинавии, Южной Америке и других местах. Начался период великих четвертичных оледенений, что привело к сокращению ареала теплолюбивой фауны и флоры и изменению их характера.

Появляются животные, приспособленные к условиям холодного климата: мамонты, медведи, волки, большерогие олени. Фауна позвоночных приобретает облик современных животных.

Достигают расцвета плацентарные млекопитающие: настоящие хищники, медведи, мастодонты, быки, а в конце неогена - слоны, гиппопотамы, гиппарионы и настоящие лошади (гиппарионовая фауна).

В связи с тем, что большие пространства были заняты сушей с травянистой растительностью, широкое развитие получили насекомые. Появились человекообразные обезьяны, самые разнообразные птицы. Облик растительности вплотную приблизился к современной, с четким разделением на тепло- и холоднолюбивые флоры.

Четвертичный период начался 1,7 млн лет назад и продолжается до сих пор. Подразделяется этот период на три эпохи: эоплейстоценовую, плейстоценовую и голоценовую. В четвертичном периоде мощное оледенение охватило континенты северного полушария: большую часть Европы, азиатскую часть России и Северной Америки, где ледники покрыли всю северную половину континента, опустившись по долине р. Миссисипи южнее 37° с. ш. Мощность ледникового покрова достигала 4 км, а общая площадь ледников составляла 67 %, в то время как сейчас она составляет 16 % от общей площади суши.

В животном мире этого периода произошли существенные изменения: вымерли типичные представители гиппарионовой фауны и на смену им пришли животные, приспособившиеся к жизни в холодном климате тундровых и лесотундровых пространств, возникших в результате оледенения - волосатые мамонты, шерстистые носороги, зубры, туры, олени и др.

Самым знаменательным событием четвертичного периода стало появление человека. Предком человека, как и обезьян, считают приматов.

Первый предок человека, живший около 12 млн лет назад, - рамапитек. Первый гоминид, который ходил уже на двух ногах, - австралопитек (т. е. южная обезьяна), жил 6,0-1,5 млн лет назад. В 1972 г. на берегу оз. Рудольф обнаружили останки человека умелого (Homohabilis), который мог изготавливать примитивные орудия. Его возраст составляет 2,6 млн лет. Затем около миллиона лет назад появился человек выпрямленный (Homo erectus), который уже научился пользоваться огнем. Затем появляется питекантроп, гейдельбергский человек, синантроп, объединенные под общим названием архантропы.

Около 250 тыс. лет назад в Европе появился ранний человек разумный (Homo sapiens), от которого произошли неандертальцы, вытесненные кроманьонцами 40-35 тыс. лет назад. Это были люди с современным строением тела и черепа, которые являются предками современного человека, появившегося около 10 тыс. лет назад.

Трудно переоценить значение обшей хронологической шкалы, созданной многими поколениями геологов разных стран и континентов и отразившей поэтапно всю геологическую историю нашей планеты.

Заканчивая изложение истории развития органического мира, следует остановиться на генетической концепции, устанавливающей естественные рубежи его эволюции и увязывающей их с этапностью эндогенной активизации земли.

Биотические кризисы - массовые вымирания животных и растений коррелируются определенным образом с ледниковыми периодами и фазами эндогенной активности Земли - дегазацией вещества ядра Земли, активизацией вулканической деятельности и усилением базальтового магматизма.

Первый биотический кризис - вымирание одних животных и растений и появление новых видов - произошел в верхнем протерозое, завершившемся четырьмя катастрофическими оледенениями в интервале 850-600 млн лет назад. Окончание последней, наиболее грандиозной ледниковой эпохи (600 млн лет назад) характеризуется появлением эдиакарской фауны, найденной в Эдиакаре, на юге Австралии, мягкотелые представители которой внезапно исчезли на границе протерозоя и палеозоя, уступив место фауне кембрия - археоциатам, трилобитам, брахиоподам. Примечательна корреляция этого кризиса с образованием глинистых отложений в Китае, обогащенных иридием, медью и халькофильными элементами.

Последующие крупные биотические кризисы произошли на границе палеозоя и мезозоя. Исчезло 90 % всех морских животных. На этом рубеже тоже отмечается образование глин (Италия, Сан-Антонио) с повышенными концентрациями Ir, Cr, Ni, Co, Sc, Ti, иногда Си и халькофильных элементов. Граница триаса и юры отмечена массовым вымиранием животных и образованием глин, обогащенных иридием, фосфором, редкоземельными элементами, а также V, Cr, Ni, Ti, Zn, As и др. Окончание мезозойской эры завершилось массовым вымиранием динозавров, аммонитов, широким распространением черных сланцев, базальтовых покровов и отложений, обогащенных иридием. И последний биотический кризис начала голоцена (около 10 тыс. лет назад) завершился потеплением после оледенения и вымиранием мамонтов.

А.А. Маракушев отмечает, что все границы биотических катастроф отмечены глобальным распространением черных сланцев, образование которых связывается с периодическим усилением спрединга Мирового океана и интенсивной водородной дегазацией жидкого ядра Земли, отмеченного геохимическими аномалиями и аномальным накоплением иридия в осадках. Формации черных сланцев отражают катастрофические преобразования Земли, синхронизируемые с пиками глобальных диастрофизмов (млрд лет).

Периоды дегазации характеризуются проникновением водорода в гидросферу и атмосферу, что вызывает разрушение защитного озонового слоя Земли, сопровождающегося оледенением и последующими биотическими катастрофами.

Еще одним проявлением активизации эндогенной динамики Земли является периодическое появление взрывных кольцевых структур (астроблем) на платформах, также отмечающих рубежи геологических этапов.

Закономерности цикличности геологической истории Земли можно изложить в следующей последовательности. Периодические проявления эндогенной активизации Земли определяются импульсами водородной дегазации жидкого ядра Земли в зоне срединных океанических хребтов и периодическим образованием взрывных кольцевых структур (астроблем) на платформах. Дегазация жидкого ядра сопровождается вулканическими взрывными извержениями, формированием мощных туфогенных толщ, излиянием покровных базальтов, инверсией магнитных полюсов, образованием черных сланцев и появлением геохимических аномалий. Водородная дегазация разрушает защитный озоновый слой, что приводит к периодическим оледенениям с последующим массовым вымиранием животных и растений - биотическим катастрофам.

Историю развития жизни изучают по данным геологии и палеонтологии , поскольку в структуре земной коры сохранилось много иско­паемых останков, произведенных живыми организмами. На месте бывших морей образовались осадочные породы, содержащие огромные пласты мела, пес­чаников и других минералов, представляющих донные осадки известко­вых раковин и крем­­ниевых скелетов древних организмов. Имеются и надежные методы опре­де­ления возраста земных пород, содержащих органику. Обычно используется радиоизотопный метод, основанный на измерении содер­жа­ния радиоактивных изотопов в сос­таве урана, углерода и др., которое закономерно изменяется во времени.

Сразу отметим, что развитие форм жизни на Земле шло параллельно с геологической перестройкой структуры и рельефа земной коры, с изменением границ материков и мирового океана, соста­ва атмосферы, температуры земной поверхности и других геологических факторов. Эти изменения и обусловливали в решающей степени направление и динамику биологической эволюции.

Первые следы жизни на Земле дати­руются возрастом примерно 3,6–3,8 млрд лет. Таким образом, жизнь возникла вскоре после образования земной коры. В соответствии с наиболее значительными событиями геобиоло­ги­чес­­кой эволюции в истории Земли выделяют крупные интервалы вре­ме­ни – эры, внутри них – периоды, в пределах периодов – эпохи и т.д. Для большей наглядности изобразим кален­дарь жизни в виде условного годового цикла, в котором один месяц соответствует 300 млн лет реального времени (рис. 6.2). Тогда весь период развития жизни на Земле как раз и составит один условный год нашего календаря – от “1 января” (3600 млн лет тому назад), когда обра­зо­вались первые протоклетки, до “31 декабря” (ноль лет), когда живем мы с вами. Как видим, отсчет геологического времени принято вести в обратном порядке.

(1) Архей

Архейская эра (эра древнейшей жизни) –от 3600 до 2600 млн лет назад, протяженность 1 млрд лет – примерно четверть всей истории жизни (на нашем условном календаре это “январь”, “февраль”, “март” и несколько дней “апреля”).

Первобытная жизнь существовала в водах мирового океана в форме примитивных протоклеток. В атмос­фере Земли еще не было кислорода, но в воде были свободные органические вещества, поэтому первые бактериоподобные организмы питались гетеротрофно: поглощали готовую органику и за счет брожения получали энергию. В горячих источниках, богатых выделениями сероводорода и других газов, при температурах до 120°С могли жить аутотрофные хемосинтезирующие бакте­рии или их новые формы – археи. По мере истощения первичных запасов органического ве­щес­тва возникали аутотрофные фотосинтезирующие клетки. В прибрежных зонах происходил выход бактерий на сушу, и нача­лось образование почвы.

С появлением в воде и атмосфере свободного кислорода (от фотосинтезирующих бактерий) и накоп­лением углекислого газа создаются возможности для развития более продуктивных бактерий, а за ними и первых эукариотных клеток с настоящим ядром и органоидами. От них впоследствии развивались разнообразные протисты (одноклеточные простейшие организмы) и далее растения, грибы, жи­вот­ные.

Таким образом, в архейскую эру в мировом океане возникли про- и эукариотные клетки с разным типом питания и энергетического обеспечения. Сложились предпосылки для перехода к многоклеточным организмам .

(2) Протерозой

Протерозойская эра (эра ранней жизни), от 2600 до 570 млн лет назад, – самая протяженная эра, охватывающая около 2 млрд лет, то есть более половины всей истории жизни.

Рис. 6.2. Эры и периоды развития жизни на Земле

Интенсивные процессы горо­образования изменили соотношение океана и суши. Существует предположение, что в начале протерозоя Земля претерпела первое оледенение, вызванное изменением состава атмосферы и ее прозрачности для солнечного тепла. Многие пионерные группы организмов, сделав свое дело, вымирали, на их смену приходили новые. Но в целом биологические преобразования совершались очень медленно и постепенно.

Первая половина протерозоя проходила при полном расцвете и доминировании прокариот – бактерий и архей. В это время железобактерии мирового океана, осаж­даясь поколение за поколением на дно, формируют огромные залежи осадочных железных руд. Крупнейшие из них известны под Курском и Кривым Рогом. Эукариоты были представ­лены в основном водорослями. Многоклеточные организмы были малочисленны и весьма примитивны.

Около 1000 млн лет назад в результате фотосинтетической деятельности водорослей темп накопления кислорода быстро возрастает. Этому способствует также завершение окисления железа земной коры, которое до сих пор поглощало основную массу кислорода. В результате начинается бурное разви­тие простейших и многоклеточных живот­ных. Последняя четверть протерозоя известна как “век медуз”, так как эти и им подобные кишечнополостные животные составляют доминирующую и наиболее прогрессивную на то время форму жизни.

Около 700 млн лет тому назад наша планета и ее обитатели переживают второй ледниковый период, после которого прогрессивное развитие жизни приобретает все более динамичный характер. В так называемый вендский период закладывается несколько новых групп многоклеточных животных, но жизнь все еще сконцентрирована в морях.

В конце протерозоя происходит накопление в атмосфере трехатомного кислорода О 3 . Это озон, поглощающий ультрафиолетовые лучи солнеч­ного света. Озоновый экран снизил уро­вень мутагенности солнеч­ного излучения. Дальнейшие новообразования были многочисленны и разнообразны, но они носили все менее радикальный характер – в пределах уже сформированных биологических царств (бактерий, архей, протистов, рас­те­ний, грибов, животных) и основных типов.

Итак, в течение протерозойской эры господство прокариот сме­ни­лось господством эукариот, произошел радикальный переход от одноклеточности к многоклеточности, сформировались основные типы жи­вотного царства. Но эти сложные формы жизни существовали исклю­чи­тельно в морях.

Земная суша в это время представляла один большой континент; геологи дали ему название Палеопангея. В дальнейшем глобальная тектоника плит земной коры и соответствующий дрейф материков будут играть большую роль в эволюции наземных форм жизни. Пока же, в протерозое, каменистая поверхность береговых областей медленно покрывалась почвой, в сырых низинах селились бактерии, низшие водоросли, простейшие однокле­точные животные, которые по-прежнему прекрасно существовали в своих экологических нишах. Суша еще ждала своих завоевателей. А на нашем историческом календаре уже было начало “ноября”. До “Нового года”, до наших с вами дней, оставалось меньше “двух месяцев”, всего 570 млн лет.

(3) Палеозой

Палеозойская эра (эра древней жизни) – от 570 до 230 млн лет назад, общая про­тя­женность 340 млн лет.

Очередной период интенсивного горообра­зования при­вел к изменению рельефа земной поверхности. Палеопангея разделилась на гигантский материк Южного полушария Гондвану и несколько небольших материков Северного полушария. Бывшие участки суши оказались под водой. Некоторые группы вымерли, но другие приспосабливались и осваивали новые среды обитания.

Общий ход эволюции, начиная с палеозоя, отражен на рис. 6.3. Обратите внимание на то, что большинство направлений эволюции организмов, зародившихся в конце протерозоя, продолжают сосуществовать с вновь появляющимися молодыми группами, хотя мно­гие сокращают свой объем.Природа расстается с теми, кто не соответствует меняющимся условиям, но максимально сохраняет удачные варианты, отбирает и развивает из них наиболее приспособленные и, кроме того, создает новые формы, среди них и хордовые животные. Появляются высшие растения – завоеватели суши. Их тело разделено на корень и стебель, что позволяет хорошо закреп­ляться на почве и доставать из нее влагу и минеральные вещества.

Рис. 6.3. Эволюционное развитие живого мира от конца протерозоя до нашего времени

Площадь морей то увеличивается, то уменьшается. В конце ордовика в результате понижения уровня мирового океана и общего похолодания произошло быстрое и массовое вымирание многих групп организмов, как в морях, так и на суше. В силуре материки Северного полушария соединяются в суперконтинент Лавразию, который разделен с Южным континентом Гондваной. Климат становится более сухим, мягким и теплым. В морях появляются панцирные “рыбы”, на сушу выхо­дят первые членистые животные. С новым поднятием суши и сокра­щением морей в девоне климат становится более контрастным. На земле появляются мхи, папоротники, грибы, формируются первые леса, состоящие из гигантских папоротников, хвощей и плаунов. Среди животных возникают первые земноводные, или амфибии. В карбоне широко распространены болотистые леса из громадных (до 40 м) древовидных папоротников. Именно эти леса оставили нам залежи каменного угля (“ка­мен­ноугольные леса”). В конце карбона идет поднятие суши и похолодание, появляются первые пресмыкающиеся животные, окончательно осво­бодившиеся от водной зависимости. В пермском периоде очередное поднятие суши привело к объединению Гондваны с Лавразией. Снова образовался единый материк Пангея. В результате очередного похолодания полярные области Земли подвергаются оледенению. Вымирают древовидные хвощи, плауны, папоротники, многие древние группы беспозвоночных и позвоночных животных. Всего к концу пермского периода вымерло до 95% морских видов и около 70% наземных. Зато быстро прогрессируют пресмыкающиеся (рептилии) и новые насекомые: их яйца защищены от высыхания плотными оболочками, кожа покрыта чешуей или хитином.

Общий итог палеозоя – заселение суши растениями, грибами и животными . При этом и те, и другие, и третьи в процессе своей эволюции усложняются анатомически, приобретают новые структурные и функциональные приспособления для размножения, дыхания, питания, спо­собствующие освоению новой среды обитания.

Завершается палеозой, когда на нашем календаре “7 декабря”. Природа “торопится”, темп эволюции в группах высок, сжимаются сроки преобразований, но на сцену только выходят первые пресмыкающиеся, а время птиц и млекопитающих еще далеко впереди.

(4) Мезозой

Мезозойская эра (эра средней жизни) – от 230 до 67 млн лет назад, общая протяженность 163 млн лет.

Поднятие суши, начавшееся в предыдущем периоде, продолжается. Вначале существует единый материк Пангея. Его общая площадь значительно больше, чем площадь суши в настоящее вре­мя. Центральная часть континента покрыта пустынями и горами, уже сформированы Урал, Алтай и дру­гие горные массивы. Климат становится все более засушливым. Лишь долины рек и приморские низменности заселены однообразной растительностью из примитивных папоротников, цикадовых и голосеменных.

В триасе Пангея постепенно распадается на северный и южный континенты. Среди животных на суше начинают свое “триумфальное шествие” травоядные и хищные пресмыкающиеся, в том числе динозавры. Среди них есть уже и современные виды: черепахи и крокодилы. В морях по-прежнему живут земноводные, разнообразные головоногие мол­люс­­ки, появляются костистые рыбы вполне современного вида. Это оби­­лие пищи привлекает в море хищных пресмыкающихся, отделяется их специализированная ветвь – ихтиозавры. От каких-то ранних пресмыкающихся обособились небольшие группы, давшие начало птицам и млекопитающим животным. Они уже имеют важную особенность – теплокровность, которая даст большие преимущества в дальнейшей борьбе за существование. Но их время еще впереди, а пока зем­ные пространства продолжают осваивать динозавры.

В юрском периоде появились первые цветковые растения, а среди животных господствуют гигантские пресмыкающиеся, освоившие все среды обитания. В теплых морях кроме морских прес­мыкающихся процветают костистые рыбы и разнообразные головоногие моллюски, похожие на совре­мен­ных кальмаров и осьминогов. Продолжается раскол и дрейф материков с генеральным направлением к их современному состоянию. Это создает условия для изоляций и относительно независимого раз­вития фауны и флоры на разных материках и островных системах.

В меловом периоде кроме яйцекладущих и сумчатых млекопитающих появляются плацентарные, длительно вынашивающие дете­ны­шей в материнской утробе в контакте с кровью через плаценту. Насекомые начинают использовать цветы как источник питания, одновременно способствуя их опылению. Такая кооперация принесла выгоду и насекомым, и цвет­ковым растениям. Конец мелового периода был ознаменован понижением уровня океана, новым общим похолоданием и массовым вымиранием многих групп животных, в том числе динозавров. Полагают, что на суше осталось 10–15% прежнего видового разнообразия.

Есть разные версии этих драматических событий конца мезозоя. Наиболее популярен сценарий глобальной катастрофы, вызванной падением на Землю гигантского метеорита или астероида и приведшей к быстрому разрушению биосферного равновесия (ударная волна, запыление атмосферы, мощные волны цунами и пр.). Однако все могло быть и гораздо прозаичнее. Постепенная перестройка материков и изменение климата могли привести к разрушению сложившихся пище­вых цепей, построенных на ограниченном круге продуцентов. Сначала в похолодевших морях вымерли некоторые беспозвоночные животные, в том числе крупные головоногие моллюски. Естественно, это привело к вымиранию морских ящеров, для которых головоногие были основной пищей. На суше происходило сокращение зоны произрастания и биомассы мягкой сочной растительности, что привело к вымиранию гигантских растительноядных, а за ними и хищных динозавров. Сократилась кор­мо­вая база и для крупных насекомых, а за ними стали исчезать летаю­щие ящеры. В итоге за несколько миллионов лет основные группы динозавров вымерли. Надо иметь в виду и то обстоятельство, что пресмыкающиеся были холодно­кровными животными и оказались не приспособленными к существованию в новом, значительно более суровом климате. В этих условиях выжили и получили дальнейшее развитие мелкие пресмыкающиеся – ящерицы, змеи; а относительно крупные, такие как крокодилы, черепахи, гаттерия, сохранились лишь в тропиках, где оставались необходимая кормовая база и мягкий климат.

Таким образом, мезозойская эра полноправно называется эрой пресмыкающихся. За 160 млн лет они пережили свой расцвет, широчайшую дивергенцию по всем средам обитания и вымерли в борьбе с неиз­бежной стихией. На фоне этих событий огромные преимущества получили теплокровные организмы – млекопитающие и птицы, перешедшие к освоению освобожденных экологических ниш. Но это уже была новая эра. До “Нового года” оставалось “7 дней”.

(5) Кайнозой

Кайнозойская эра (эра новой жизни) – от 67 млн лет назад до настоящего времени. Это эра цветковых растений, насекомых, птиц и млекопитающих. В эту эру появился и человек .

В начале кайнозоя расположение материков уже близко к современному, однако имеются широкие мосты между Азией и Северной Америкой, последняя связана через Гренландию с Европой, а Европа отделена от Азии проливом. На несколько десятков миллионов лет оказалась в изоляции Южная Америка. Индия тоже изолирована, хотя и продвигается постепенно на север, навстречу Азиатскому континенту. Австралия, которая еще в начале кайнозоя была связана с Антарктидой и Южной Америкой, около 55 млн лет назад полностью обособляется и постепенно продвигается на север. На изолированных материках создаются осо­­бые направ­ления и темпы эволюции флоры и фауны. Например, в Австралии отсутствие хищников позво­лило сохраниться древним сумчатым и яйцекладущим млекопитающим, давно вымершим на других континентах. Геологические перестройки способствовали появлению все большего биоразнообразия, так как создавали большие вариации условий жизни растений и животных.

Около 50 млн лет назад на территории Северной Америки и Европы в классе млекопитающих появляется отряд приматов, давший впоследствии обезьян и человека. Первые люди появились около 3 млн лет тому назад (за “7 часов” до “Нового года”), по-видимому, в восточном средиземноморье. При этом климат становился все более прохладным, наступал очередной (четвертый, считая с раннего протерозоя) ледниковый период. В северном полушарии за последний миллион лет происходит четыре периодических оледенения (как фазы ледникового периода, чередующиеся с временными потеплениями). За это время вымерли мамонты, многие крупные звери, копытные животные. Большую роль в этом сыграли люди, которые активно занимались охотой и земледелием. Человек современного вида сформировался всего лишь около 100 тысяч лет назад (после “23 часов 45 минут 31 декабря” на­шего условного года жизни; мы существуем в этом году всего-то его последние четверть часа!).

В заключение еще раз подчеркнем, что движущие силы биологической эволюции надо видеть в двух взаимосвязанных плоскостях – геологической и собственно биологической . Каждая очередная крупномасштабная перестройка земной поверхности влекла за собой неизбежные преобразования в живом мире. Каждое новое похолодание приво­дило к массовому вымиранию плохо приспособленных видов. Дрейф материков определил раз­личие темпов и направлений эволюции в крупных изолятах. С дру­гой стороны, прогрессивное развитие и размножение бактерий, растений, грибов и животных сказывалось и на самой геологической эволюции. В результате разрушения минеральной осно­вы Земли и ее обогащения продуктами обмена ве­ществ микроорга­низмов возникала и постоянно перестраивалась поч­ва. Накопление кислорода в конце протерозоя привело к образованию озонового экрана. Многие продук­ты жизнедеятельности оставались навсегда в земных нед­рах, преоб­разуя их необратимо. Это и органогенные железные ру­ды, и залежи серы, мела, каменного угля, и многое другое. Живое, по­рожденное из неживой материи, эволюционирует вместе с ней, в едином биогеохими­ческом потоке вещества и энергии. Что же ка­сается внутренней сущности и непосредственных факторов биоло­гичес­кой эволюции, мы рассмотрим их в специальном разделе (см. 6.5).

Таблица 1

Эра Период (млн. лет) Растительность и животный мир
Архейская , протерозойская (начало 4500 млн. лет назад) ~3500 Жизнь зародилась в морях. (Никаких ископаемых следов о первых животных существ не осталось.)
Существование одноклеточных морских организмов.
В морях появляются многоклеточные живые существа.
Палеозойская (начало 600 млн. лет назад) 600-500 В морях появляются бесчисленные позвоночные. Среди беспозвоночных находим предков нынешних моллюсков и членистоногих.
Первые морские позвоночные панцирные рыбы (уже вымершие) с хрящевым скелетом, панцирем.
Появляются современные рыбы. Начинает развиваться жизнь на появляющихся участках суши. Первые новоселы суши - бактерии, грибы, мхи и небольшие беспозвоночные животные, за ними следуют земноводные (амфибии).
400-300 Земля покрывается могучими лесами папоротников и других растений, вымерших к настоящему времени. Распространяются насекомые.
Зарождение пресмыкающихся (рептилий).
Мезозойская (начало 230 млн. лет назад) 230-70 Эра рептилий. Эти животные распространяются не только на появляющихся из воды участках суши, но также и в морях. Некоторые из них достигают огромных размеров.
230-190 Зарождаются млекопитающие. Распространяются первые цветочные растения: голосеменные растения. Исчезают папоротниковые леса.
Зарождаются птицы. Появляются первые покрытосемянные растения (растения, у которых цветы имеют завязи).
Леса голосеменных растений на большей части суши вытесняются лесами покрытосемянных.
Вымирают динозавры и другие крупные рептилии.
Кайнозойская (начало 70 млн. лет назад) 70-20 Млекопитающие распространяются во всей окружающей среде, вытесняя рептилий, численность которых резко сокращается. Значительно распространяются птицы.
70-50 Зарождаются различные классы млекопитающих: плотоядные, рукокрылые и предки современных обезьян и человека. Появляются травоядные (например, крупный рогатый скот, олени, лошади)
20-10 Некоторые млекопитающие (китообразные) заселяют моря.
Появляется австралопитек - прародитель человека.
0,04-0,02 Исчезают некоторые крупные млекопитающие (например, мамонт, шерстистый носорог, саблезубый тигр). Человек становится безраздельным хозяином Земли.

Первая эра - архейская, продолжительностью 900 млн. лет, почти не оставила следов органической жизни. Наличие пород органического происхождения - известняка, мрамора, углистых веществ - указывает на существование в архейскую эру бактерий и сине-зеленых водорослей (цианобактерий) - клеточных предъядерных организмов. Они обитают в морях, но выходят и на сушу.


Вода насыщается кислородом, а на суше происходят почвообразовательные процессы. Бактерии не дали начала образованию новых группировок и остались до нашего времени обособленными. Именно в архейскую эру произошло три крупных изменения в развитии живых организмов: возникновение полового процесса, фотосинтеза и многоклеточности. Половой процесс возник в форме слияния двух одинаковых клеток у жгутиковых, считающихся наиболее древними одноклеточными.

Позднее половой процесс происходил уже при помощи специальных половых клеток - мужской и женской, которые при слиянии образуют зиготу . Из нее развивается организм, содержащий генотип отца и матери, что дает комбинации различных признаков в потомстве, расширяя возможности действия естественного отбора. С появлением фотосинтеза единый ствол жизни разделился на два - растения и животные - за счет дивергенции. Многоклеточность вызвала дальнейшее усложнение организации живых организмов: дифференциацию тканей, органов, систем и их функций.

В протерозойскую эру (продолжительность 2 000 млн. лет) развиваются зеленые водоросли, в том числе и многоклеточные. Остатки животного мира редки и малочисленны. Предками многоклеточных организмов, вероятно, были организмы, подобные колониальным формам одноклеточных жгутиковых, а первые многоклеточные животные - близки губкам и кишечнополостным.

Известны остатки всех типов беспозвоночных животных, в том числе иглокожих и членистоногих. Полагают, что в конце протерозойской эры появились первичные хордовые - подтип бесчерепных, единственным представителем которых в современной фауне является ланцетник. Появляются двустороннесимметричные животные, развиваются органы чувств, нервные узлы, усложняется поведение животных, возрастает подвижность и энергия в процессах жизнедеятельности в целом.

В палеозойскую эру, продолжительностью 330 млн. лет (древняя жизнь), подразделяемую на несколько периодов, происходили дальнейшие эволюционные преобразования органического мира. В кембрийском периоде (570-490 млн. лет назад), кроме бактерий и одноклеточных водорослей, были распространены крупные многоклеточные водоросли. Для кембрия и ордовика (490-435 млн. лет назадхарактерно наличие остатков ископаемых простейших, кишечнополостных, губок, червей (три типа), иглокожих, моллюсков, членистоногих, хордовых.

Силур (435-400 млн. лет назад) богат остатками ископаемых трилобитов и особенно плеченогих (в настоящее время их осталось около 200 видов). Обнаружены остатки бесчелюстных позвоночных - щитковых (предки миног). Дальнейшее развитие эволюции продолжалось по пути дивергенции типов животного мира с заменой низкоорганизованных примитивных форм более высокоорганизованными. В конце силурийского периода часть зеленых многоклеточных водорослей приспособилась к жизни на суше. Возможно, это были псилофиты. Они уже имели ткани.

Появились грибы. С середины девона (400-435 млн. лет назад) постепенно убывают псилофиты, исчезая к концу этого периода. А на смену им появляются плауновые, хвощевые и папоротниковые - споровые растения. В период девона появляются челюстноротые панцирные рыбы (их потомки - современные хрящевые рыбы, например, акулы и скаты), двоякодышащие. Однако выход на сушу осуществила другая группа рыб - кистеперые. Самыми примитивными наземными позвоночными считаются древние земноводные, берущие начало от одной из групп кистеперых.

На основе наследственной изменчивости в процессе естественного отбора плавники превратились в конечности для передвижения по суше. Для дыхания на суше развились легкие. Древнейшие земноводные - стегоцефалы (панцирноголовые) обитали в болотистых местах. Стегоцефалы соединили в себе признаки рыб, земноводных и пресмыкающихся. Животные девона, как и растения, обитали во влажных местах, поэтому не могли распространяться в глубь суши и занимать места, удаленные от водоемов.

В каменноугольный период (345-280 млн. лет назад) произошел крупный эволюционный подъем в развитии наземной растительности. Этот период отличался теплым влажным климатом. На Земле образовались огромные леса, состоящие из гигантских папоротников, древовидных хвощевых и плауновых - высотой 15-30 м. Они имели хорошую проводящую систему, корни, листья, но их размножение еще было связано с водой. Леса каменноугольного периода образовали месторождения каменного угля.

В этот период произрастали и семенные папоротники, у которых вместо спор развивались семена. Семенные папоротники (древнейшие голосеменные) ясно указывают на происхождение семенных растений от споровых. Появление семенных растений было крупным ароморфозом, определившим дальнейшую эволюцию растений. У семенных растений оплодотворение происходит уже без участия воды, а зародыш находится в семени, имеющем запас питательных веществ.

С конца каменноугольного периода в связи с усиленным горообразованием влажный климат почти повсеместно сменился сухим. Древовидные папоротники стали вымирать, лишь в отдельных сырых местах сохранились мелкие формы. Вымерли и семенные папоротники. Им на смену пришли более жизнестойкие голосеменные растения, которые благодаря распространению семян освоили засушливые места обитания. Распространение и пышное развитие голосеменных продолжалось почти до конца мезозойской эры. В каменноугольный период шло интенсивное развитие насекомых, пауков, скорпионов, имеющих воздушное дыхание и откладывающих яйца с защитной оболочкой, защищающей от высыхания.

Вместе с тем начали исчезать трилобиты . Существавало много плеченогих, моллюсков, рыб (особенно акул), иглокожих, развивались кораллы. Ранее существовавшие типы и классы дивергировали, приспосабливались к различным местам обитания. При наступлении засушливых условий в конце каменноугольного периода крупные земноводные исчезают, сохраняются лишь мелкие формы в сырых местах. На смену земноводным пришли пресмыкающиеся, более защищенные и приспособленные к существованию в условиях более сухого климата на суше.

Появление древнейших пресмыкающихся - новый ароморфоз в развитии животного мира. В основном это были травоядные животные, но некоторые перешли к хищному образу жизни. Появились зверозубые рептилии, от потомков которых, полагают, произошли первые млекопитающие.

Зверозубые ящеры - переходная форма. Таким образом, в палеозойскую эру, а именно в пермском периоде (280-230 млн. лет назад), растения и животные уже вышли на сушу: это сосудистые (споровые и голосеменные) растения, кистеперые рыбы, земноводные, пресмыкающиеся, членистоногие (пауки, как предполагают, появились в силуре). Сухой и теплый климат пермского периода способствовал их становлению. Архейская, протерозойская и палеозойская эры дали большой фактический материал, на основании которого можно судить об основных направлениях эволюции органического мира.

В триасовом периоде мезозойской эры в условиях континентального климата усилилось развитие голосеменных, у которых оплодотворение происходило уже без участия воды, что является крупнейшим ароморфозом. Для мезозойской эры характерно необыкновенно богатое развитие голосеменных растений, продолжавшееся до середины мелового периода, когда в связи с увеличивающейся засухой и увеличением яркости Солнца на первый план выходит недавно возникшая группа растений - покрытосеменные. Двудольные и однодольные растения появились уже в конце мезозоя, а в меловом периоде они начинают процветать.

Для покрытосеменных растений характерен крупный ароморфоз - появление цветка, приспособленного к опылению. Идиоадаптационные изменения цветка способствовали многочисленным частным приспособлениям к опылению. В дальнейшем происходила идиоадаптация цветка, в результате которой выработались приспособления к распространению плодов и семян, а также к уменьшению испарения воды листьями. Пышное развитие покрытосеменных растений одновременно было связано с развитием высших форм членистоногих (насекомых) опылителей: бабочек, шмелей, пчел, мух и др.

Мезозойская эра (“эра динозавров”; подробнее разобрана в таблице 2) характеризуется поразительным развитием и последующим очень быстрым вымиранием гигантских пресмыкающихся. На суше обитали гигантские ящеры - динозавры, живородящие ихтиозавры, крокодилы, летающие ящеры. Гигантские пресмыкающиеся относительно быстро вымерли. Первые мелкие млекопитающие появились в триасе, их размножение осуществлялось уже путем живорождения, детенышей они выкармливали молоком. Они имели постоянную температуру и дифференцированные зубы.

Предками млекопитающих были зверозубые ящеры. Первые птицы возникли в юрском периоде мезозойской эры - это были зубастые птицы. А в конце мезозоя появились уже первые настоящие птицы. Древние хрящевые рыбы в триасе были вытеснены настоящими костистыми. В результате дивергенции непрестанно увеличивалось видовое разнообразие в пределах каждой систематической группы.

Характеристики Мезозойской эры

Таблица 2

Эра (продолжительность, млн. лет) Период (продолжительность, млн. лет) Начало (млн. лет назад) Климат и среда (глобальные географические изменения) Развитие органического мира
Мир животных Мир растений
Мезозойская (средней жизни), Триасовый (Триас), 40 ± 5 230 ± 10 Ослабление климатической зональности, сглаживание температурных различий. Начало движения материков. Начало расцвета рептилий - начинается «век динозавров»; появляются черепахи, крокодилы и др. Возникновение первых млекопитающих, настоящих костистых рыб. Распространены папоротниковые, хвощевидные, плауновидные. Вымирают семенные папоротники.
Юрский (Юра), 190 - 195 ± 5 Климат, вначале влажный, сменяется к концу периода засушливым в области экватора. Движение континентов, формирование Атлантического океана. В океане появление новых групп моллюсков, в том числе головоногих, а также иглокожих. Господство пресмыкающихся на суше, в океане и воздухе. В концу периода появление первоптиц - археоптерикса. Широко распространены папоротники и голосемянные, появляется хорошо выраженная ботанико-географи-ческая зональность.
Меловой (Мел), 136 ± 5 Во многих районах Земли похолодание климата. Выраженное отступление морей, сменившееся обширным увеличением площади Мирового океана и новым поднятием суши. Интенсивные горообразовательные процессы (Альпы, Анды, Гималаи). Появление настоящих птиц, а также сумчатых и плацентарных млекопитающих. В водоемах преобладание костистых рыб. Расцвет насекомых. Вымирание крупных рептилий и примитивных мезозойских млекопитающих. Резко сокращается численность папоротников и голосеменных. Появляются первые покрытосеменные растения.

Кайнозойская эра (новая жизнь) длится, примерно, 60-70 млн. лет. Первый ее период - палеоген, второй - неоген, а третий - антропоген, который продолжается по настоящее время. В течение этой эры сформировались континенты и моря в их современном виде. В палеогене покрытосеменные растения распространились по всем материкам и пресноводным водоемам. Во второй половине этого периода начались бурные горнообразовательные процессы. Наступило похолодание, вечнозеленые леса сменились листопадными. Происходила быстрая идиоадаптация форм в различных местных условиях.

В конце неогена - начале антропогена с севера наступали ледники, на пути сползания ледников погибло все живое, остались только те формы, которые смогли уцелеть и приспособиться к изменившимся условиям среды. Развилась арктическая флора. В антропогене происходит окончательное формирование современного растительного мира. В кайнозое распространились брюхоногие и двустворчатые моллюски, среди членистоногих процветают насекомые.

Крупные ароморфозы насекомых - развитие трахейной системы дыхания, ротового аппарата жующего типа, твердого хитинового покрова, членистых конечностей и нервной системы обеспечили их процветание. Птицы и млекопитающие заняли господствующее положение в животном мире благодаря повышению интенсивности функций центральной нервной системы (в особенности функций головного мозга), усложнению строения кровеносной системы (разделение артериальной и венозной крови), постоянной температуре тела и повышению уровня обменных процессов и др. Быстрая идиоадаптация к изменяющимся условиям среды обеспечила их процветание.

Существует несколько гипотез о происхождении жизни на Земле. Их можно разделить на

две группы.

Биогенез - происхождение живого от живого (гипотеза панспермии, стационарного состояния).

Абиогенез - происхождение живого от неживого (гипотеза самозарождения, биохимическая эволюция)

гипотеза стационарного состояния

Земля и жизнь на ней никогда не возникали, а существуют вечно.

Виды живых организмов могут вымирать или изменять свою численность, но не могут меняться.

Доказательство: из теории биогенеза как утверждения о том, что живые организмы могут происходить только от других живых организмов, неизбежно следует единственный логичный вывод: жизнь существовала вечно. Другими словами, если проследить цепочку порождающих друг друга живых организмов в прошлое, то она должна тянуться бесконечно.

креационизм

Многообразие форм органического мира является результатом сотворения их Богом.

Отрицает изменение видов и их эволюцию.

Практически все религиозные учения утверждают, что человек и все другие живые существа созданы Богом. Виды сразу были совершенными и всегда останутся такими, какими они были созданы. Никаких доказательств, что это так, не существует. Это вопрос веры.

Креационистами было большинство ученых до XIX в.

Основоположник систематики К. Линней считал, что все виды растений и животных существуют со времени «сотворения мира» и созданы Богом независимо друг от друга.

Французский анатом и палеонтолог Ж. Кювье считал, что в течение истории Земли происходили обширные катастрофы, или катаклизмы, после которых опустошенные места заселялись организмами, пережившими катастрофу в отдаленных районах (теория катастроф).

Доказательство креационизма : целесообразность устройства живых организмов и их сообществ, хорошая приспособленность к условиям обитания.

Некоторые современные последователи креационизма используют существование очень сложных, разнообразных молекулярно-генетических процессов у живых существ как аргумент в пользу неслучайности их появления. Другие же согласны с существованием эволюционного процесса, но считают, что само начало эволюции было связано с актом творения.

Гипотеза панспермии

Жизнь занесена из космоса

Не предлагает решения проблемы происхождения жизни во Вселенной, а объясняет только появление ее на нашей планете занесением из космоса.

Доказательство панспермии : некоторые микроорганизмы, а особенно их споры, могут сохранять жизнеспособность при очень жестких воздействиях (например, очень низких температурах).

Однако до настоящего времени при изучении метеоритов никаких форм жизни на них не найдено.

Гипотеза биохимической эволюции Опарина–Холдейна (гипотеза абиогенеза)

Возникновение жизни на нашей планете произошло в несколько этапов эволюции:

    Абиогенный синтез простых органических соединений.

    Образование биополимеров.

    Установление связей между биополимерами - образование коацерватов .

    Возникновение мембран, отделяющих первые подобия живых организмов - протобионтов - от окружающей среды.

    Возникновение обмена веществ и энергии с окружающей средой.

    Появление способности к самовоспроизведению.

    Формирование экологических связей и образование первых экосистем.

Гипотеза абиогенеза основывается на данных современной науки о формировании Земли примерно 4,5 миллиарда лет назад.
Гипотеза Опарина–Холдейна сформировалась и получила первые экспериментальные подтверждения в 1950 - 1960-е гг. В настоящее время на основе современных данных гипотеза абиогенеза претерпела значительные изменения, была расширена и дополнена. В частности, большинство ученых сегодня считают, что возникновение самовоспроизведения предшествовало формированию мембран и полноценного обмена веществ или происходило параллельно с ними. Самовоспроизведение предполагает сохранение свойств в ряду поколений организмов, лежит в основе естественного отбора (который, безусловно, уже действовал среди этих древних систем) и эволюции в целом.

После появления нашей планеты как твердого тела и ее постепенного остывания происходила конденсация водяного пара в первичной атмосфере Земли. Дождевая вода с растворенными в ней веществами накапливалась в углублениях рельефа.

В первичной атмосфере в значительных количествах присутствовал углекислый газ, сероводород, метан, аммиак, пары воды и почти полностью отсутствовал кислород (следовательно, не было озонового слоя). Земля была подвержена жесткому ультрафиолетовому излучению Солнца.

Среда в целом была насыщена энергией. Для образования или разрыва химических связей были важны следующие источники:

    жесткое ультрафиолетовое излучение;

    электрические разряды;

    естественная радиоактивность;

    солнечный ветер;

    вулканическая деятельность.

Американские исследователи Стэнли Миллер и Гарольд Юри в 1953 году в экспериментах показали, как в далеком прошлом могли появляться биологически важные химические соединения. Они подобрали разные газы в соотношении, близком к составу древней атмосферы, и пропускали через эту смесь искровые разряды. В результате получались такие биологически важные соединения, как муравьиная и молочная кислоты, мочевина и аминокислоты (глицин, аланин, глутаминовая кислота, аспарагиновая кислота). Последующие экспериментаторы, варьируя условия и совершенствуя методы анализа, расширили набор продуктов в таком синтезе. Ими были получены многие аминокислоты, пуриновые основания - аденин и гуанин (они получаются, если в смесь газов добавить синильную кислоту), четырех- и пятиуглеродные сахара. В 2008 году опыт повторили и выяснили, что образуется 22 различных аминокислоты.
Миллер и Юри основывались в своих экспериментах на представлениях 1950-х гг. о возможном составе земной атмосферы. В настоящее время взгляды на этот вопрос изменились. В частности, считается, что концентрация СО не могла быть такой высокой, при этом было показано, что даже небольшие изменения условий и состава газовой смеси приводят к очень существенным изменениям эффективности процесса синтеза органики. Применение новых аналитических методов к древнейшим земным горным породам позволило уточнить состав древней атмосферы Земли. Он оказался очень похож на современные атмосферы Венеры и Марса - 98% СО2, 1,5% N2 и малые доли других газов, в основном аргона и SO2. Из такой атмосферы в аппарате Миллера не получается никакой органики. Для получения органики из CO2 необходим восстановитель, и ученые занялись его поисками.

Воды на поверхности и непосредственно под поверхностью Земли насыщались подобными веществами («первичный бульон» ). Состав и концентрация органических веществ зависели от окружающих условий и, вероятно, были разными в разных частях поверхности Земли. Часть образовавшихся органических веществ разрушалась. Однако другая часть могла концентрироваться, например, в пористых минералах, образуя полимеры. В экспериментах показано, что нагревание смеси аминокислот приводит к образованию достаточно длинных полипептидов со случайной последовательностью мономеров. Некоторые из этих полипептидов обладают каталитической активностью.

Жирные кислоты, соединяясь со спиртами, могли образовывать липидные пленки на поверхности водоемов.

Связи между разными биополимерами и другими веществами могли образоваться при изоляции небольших объемов биополимеров, например при образовании пузырьков из липидных пленок (коацерватов ) либо из пептидов (микросферы).

Роль коацерватов исследовалась Александром Ивановичем Опариным и его английским коллегой Джоном Холдейном. Микросферам были посвящены исследования американского ученого Сиднея Фокса.

проблемы теории абиогенеза

    Проблема сложности самовоспроизводящейся системы . Сложность живых клеток огромна. Даже самые простые бактерии имеют геном из более миллиона нуклеотидов, кодирующий свыше тысячи белков. Для работы этого генома требуются специальные молекулярные машины синтеза белка (рибосомы), синтеза ДНК (репликативная вилка), энергоснабжения (как минимум 12 ферментов гликолиза, а обычно еще и электрон-транспортная цепь на мембране) и средства регуляции и управления (транскрипционные факторы и сигнальные белки). Сложность такой системы очень высока, а более простых самостоятельно воспроизводящихся систем, чем клетка, биология не знает. Вирусы не в счет - для их размножения требуется сложная живая клетка. Дарвиновский естественный отбор может порождать все более сложные системы, но для этого они с самого начала должны быть способны к репликации. Если естественный отбор начинается только с появлением первой клетки, то для ее образования случайным путем требуется гигантское время - на много порядков больше возраста Вселенной.

    Проблема хиральной чистоты.
    Все живые системы содержат только определенные оптические изомеры аминокислот и сахаров (L-аминокислоты и D-сахара). Противоположные изомеры встречаются, но редко и в особых случаях (например, в клеточной стенке бактерий). Неживые же системы таким свойством не обладают. Это свойство живых систем называется хиральной чистотой . Она поддерживается за счет пространственного соответствия молекул биологических катализаторов - ферментов - только одному из оптических изомеров. Большинство химических реакций в неживых системах не являются стереоселективными, то есть в них участвуют оба оптических изомера с одной и той же вероятностью. Известно очень мало абиогенных процессов, которые стереоселективны, то есть в них участвует преимущественно один оптический изомер, но и они не дают достаточного обогащения системы нужными изомерами. Однако в последние годы открыто множество процессов, которые приводят к обогащению тем или иным оптическим изомером - см. далее в п.3.

    Проблема отсутствия восстановителя в первичной атмосфере (см. выше об опыте Миллера-Юри). По новым данным о составе первичной атмосферы, в ней практически не содержалось молекулярного водорода и CО, и описанные Миллером и Юри синтезы идти не могли.
    Во многих современных успешных экспериментах по абиогенному синтезу органики берут в качестве исходного вещества формальдегид. Он очень реакционноспособен и дает множество биологически значимых продуктов.
    Откуда мог взяться формальдегид? Он мог образовываться при восстановлении углекислого газа на неорганических катализаторах. Например, горячая вулканическая лава, содержащая самородное железо, при контакте с влажной СО2-атмосферой образует формальдегид. Водный раствор гидроксида железа (II) производит ту же реакцию при освещении ультрафиолетом.
    Сегодня существуют две подробно разработанные теории абиогенного синтеза органики, связывающие восстановление СО2, энергетический обмен и особенности содержания ионов металлов в живом веществе.
    Первая, предполагающая происхождение жизни в «железо-серном мире», на подводных геотермальных источниках, предложена немецким биофизиком Карлом Ваштерхаузером.
    Другой сценарий абиогенного синтеза органики на геотермальных источниках предложен Мулкиджаняном. Он следует из способности сульфидов цинка и марганца к восстановлению разных веществ на свету («цинковый мир»).
    Как происходил дальнейший синтез сложной биогенной органики? Учёные проводят множество экспериментов, стремясь подобрать условия для этих процессов, возможные на древней Земле. Большую роль в современных исследованиях играет реакция Бутлерова, открытая еще в 1865 году. В этой реакции водный раствор формальдегида (СH2O) с добавлением Ca(OH)2 или Mg(OH)2 при небольшом нагревании превращается в сложную смесь сахаров. Эта реакция оказалась автокаталитической, то есть продукты являются катализаторами. Также катализирует реакцию свет. В определенных условиях реакция Бутлерова позволяет решить проблему хиральной чистоты, приводя к появлению только определенных оптических изомеров сахаров. Для этого добавляют силикаты либо гидроксиапатит (фосфат кальция) - соединения, в которых нет недостатка в земной коре. Также к синтезу хирально чистых D-сахаров приводит добавление комплекса аминокислоты L-пролина с ионом цинка.
    Большой проблемой считался долгое время синтез нуклеотидов, так как условия синтеза его отдельных компонентов, а также 4 разных нуклеотидов оказались слабо совместимы. Однако в 2008 году Сандерлендом был осуществлен синтез нуклеотидов как целого, а не в виде отдельных компонентов, при этом получены все 4 варианта.

проблема самовоспроизведения и ГИПОТЕЗА РНК-МИРА

Как пробионты приобрели способность к саморепродукции, т.е. способность к воспроизводству структуры макромолекул? Точно сказать невозможно, однако есть гипотезы, объясняющие формирование самовоспроизводящихся систем на основе нуклеиновых кислот.

Современные ученые по-прежнему активно занимаются проблемой абиогенного синтеза и достигли значительных успехов. В частности, активно изучается автокаталитический синтез сахаров (реакция Бутлерова), открыт процесс синтеза целого нуклеотида (раньше образование нуклеотидов было неприступной крепостью - все его компоненты получить в сходных условиях не удавалось). Получив нуклеотиды, легко перейти к сборке первых нуклеиновых кислот, а эти молекулы уже содержат в себе потенциал к самовоспроизведению. Вероятно, первые самовоспроизводящиеся системы были построены на основе РНК.

Открытие в 1982 г. каталитической активности некоторых молекул РНК (рибозимов) позволяет предполагать, что именно молекулы РНК были первыми биополимерами, в которых способность к репликации сочеталась с ферментативной активностью. Искусственно получены самовоспроизводящиеся РНК (правда, небольшой длины), т. е. РНК, способные катализировать синтез своих копий. Более того, именно РНК играет важную роль во всех основополагающих и, как предполагается, древнейших процессах в клетке. Так, при биосинтезе белка на рибосомах каталитическая роль принадлежит именно рибосомной РНК. Безбелковая рибосома в настоящее время не существует - белки являются неотъемлемой частью этого комплекса, но она вполне могла существовать в прошлом.
Все эти факты говорят в пользу того, что именно РНК когда-то выполняла все биологически значимые функции в первых живых системах, а уже затем часть функций перешла к ДНК (хранение наследственной информации) и белкам (катализ, структурные функции и др.). Это предположение называется гипотезой РНК-мира и пользуется широкой поддержкой среди современных ученых.


Структура самовоспроизводящейся РНК

экология первых организмов

Можно предполагать, что на начальных этапах развития жизни на Земле появилось очень большое разнообразие протобионтов, но все они являлись анаэробными гетеротрофами, т. е. обладали бескислородным типом дыхания и поглощали готовые органические вещества (первичную органику). Уже на этом этапе могло появиться хищничество и другие формы связей между видами, т.е. первичные сообщества. В начале биологической эволюции источником питания, вероятно, служили запасы органических веществ, созданных абиогенным путем. Когда эти запасы истощились, то преимущества в размножении должны были получить те организмы, у которых появились возможности автотрофного питания, и хищники, их поедающие.

Однако следует отметить, что самые древние бесспорные остатки живых существ принадлежат фотосинтезирующим, то есть автотрофным организмам (компоненты хлорофилла, строматолиты - окаменевшие цианобактериальные маты и т. п.). Самым древним сообществом, оставившим следы в палеонтологической летописи, является именно цианобактериальный мат. Современные маты включают в себя микробов-фотосинтетиков, хемосинтетиков и гетеротрофов, и есть данные, указывающие на наличие этих компонентов и в древних матах.


Спил строматолита Современные строматолиты, Австралия

Распространение пробионтов, да и просто биологически важных полимеров и олигомеров ограничивалось жестким ультрафиолетовым излучением в отсутствие озонового экрана.
Возникновение оксигенного фотосинтеза, то есть фотосинтеза с выделением кислорода, невозможно точно датировать, но существуют палеонтологические свидетельства наличия цианобактерий 3,4 млрд лет назад. Сначала кислород не накапливался в атмосфере, а расходовался на окисление различных компонентов земной коры, например двухвалентного железа. Затем началось медленное повышение концентрации кислорода, которое привело к так называемой кислородной революции - смене характера всей атмосферы с восстановительного на окислительный. Резкое ускорение накопления кислорода в атмосфере датируется примерно 2,3 млрд лет назад. Молекулярный кислород является ядом для анаэробных организмов, а многие обитатели древней Земли были именно такими. Многие ученые считают, что оксигенация атмосферы была первой глобальной экологической катастрофой и привела к вымиранию многих организмов. Выжившие приспособились, выработав системы защиты от токсического действия кислорода, а некоторые научились использовать его для окисления органических веществ - клеточного дыхания, что позволило получить дополнительную энергию по сравнению с бескислородным обменом веществ. Поэтому аэробы (существа, дышащие кислородом) получили конкурентное преимущество по сравнению с анаэробами. Именно от таких организмов произошло большинство современных видов, в том числе и эукариоты, включающие в себя растения, животные, грибы и условную (сборную) группу простейших.

Считается, что возникновение современных типов многоклеточных было невозможно раньше достижения определенной концентрации кислорода в среде.
Накопление кислорода в атмосфере привело к формированию озонового экрана, что позволило жизни выйти на сушу.

Гипотеза самозарождения жизни

Возникновения жизни абиогенным путем в далеком прошлом

Гипотеза существовала параллельно с креационизмом. Ее сторонники считали, что условия, необходимые для возникновения жизни, имеются и в настоящее время.

Доказательство: появление личинок мух в гниющем мясе; мышей из сухарей и тряпки (опыты Ван Гельмонта).

Эксперименты, в которых самозарождение не происходило после кипячения среды и запаивания сосуда, не являлись убедительными, т. к. считалось, что кипячение убивает «жизненную силу».

Через некоторое время в открытом сосуде появились личинки мух, т. к. мухи проникли в сосуд и отложили яйца. В закрытом сосуде «самозарождения» не произошло.


Позже, в начале XVIII в., Лаздзаро Спалланцани решил проверить результаты английского исследователя Джона Нидхема о самозарождении микроорганизмов в бараньей подливке. Он брал склянки с семенным отваром, некоторые из которых закрывал пробкой. другие же запаивал на огне горелки. Одни он кипятил по целому часу, другие же нагревал только несколько минут. По прошествии нескольких дней Спалланцани обнаружил, что в тех склянках, которые были плотно запаяны и хорошо нагреты, никаких "маленьких животных нет" - они появились только в тех бутылках, которые были неплотно закрыты и недостаточно долго прокипячены, причём вероятнее всего, проникли туда из воздуха или же сохранились после кипячения, а вовсе не зародились сами по себе. Таким образом, Спалланцани не только доказал несостоятельность концепции самозарождения, но также выявил существование мельчайших организмов, способных переносить непродолжительное - в течение нескольких минут - кипячение. Между тем, Нидхем объединился с графом Бюффоном, и вместе они выдвинули гипотезу о производящей силе- некоем животворящем элементе, который содержится в бараньем бульоне и семенном отваре и способен создать живые организмы из неживой материи. Спалланцани убивает Производящую силу когда кипятит целыми часами свои склянки, утверждали они, и совершенно естественно, что маленькие зверюшки не могут возникнуть там, где нет этой силы. В последующих опытах Спалланцани удалось доказать несостоятельность этих гипотез.

Решающими оказались эксперименты известного французского биолога и химика Луи Пастера . Он присоединил к колбе S-образную трубку со свободным концом. Споры микроорганизмов оседали на изогнутой трубке и не могли проникнуть в питательную среду. Хорошо прокипяченная питательная среда оставалась стерильной, в ней не обнаруживалось зарождения жизни, несмотря на то что доступ воздуха был обеспечен. В результате ряда экспериментов Пастер доказал справедливость теории биогенеза и окончательно опроверг теорию спонтанного зарождения.
Именно Пастеру медицина обязана рождением антисептики и асептики, открывших дорогу современной хирургии.

Колба с S-образным горлышком.