Окисление органических веществ и соединений: процесс протекания реакции и конечные продукты образования. Урок по биологии в специальной (коррекционной) школы VIII вида на тему: "Образование органических веществ в листе" (7 класс) Оборудование, реактивы, м

Не будем загонять себя в строгие рамки с самого начала и опишем термин максимально просто: процессом окисления органических веществ (органики; это, например, белки, жиры и углеводы) называется реакция, в результате которой увеличивается объём кислорода (O2) и уменьшается объём водорода (H2).

Органические вещества – это различные химические соединения, у которых в состав входит (С). Исключение составляют угольная кислота (H2CO3), карбиды (например, карборунд SiC, цементит Fe3C), карбонаты (к примеру, кальцит CaCO3, магнезит MgCO3), оксиды углерода, цианиды (такие как KCN, AgCN). Органические вещества вступают во взаимодействие с наиболее известным окислителем, кислородом O2, при этом образуя воду H2O и углекислый газ CO2.

Процесс окисления органических веществ

Если рассуждать логически, то раз процесс полного окисления – это горение, то процесс неполного – это окисление органики, потому что при таком воздействии происходит не воспламенение вещества, а лишь его нагревание (сопровождающееся выделением определённого количества энергии в виде АТФ – аденозинтрифосфата – и теплоты Q).

Реакция органического окисления не слишком замысловата, поэтому её начинают разбирать ещё в начале курса химии, и ученики быстро усваивают информацию, если, конечно, прикладывают хоть какие-нибудь усилия. Мы уже узнали, что это за процесс, и теперь предстоит вникнуть в саму суть дела. Итак, каким образом протекает реакция и что из себя представляет?

Окисление органического вещества – это своего рода переход, превращение одного класса соединений в другой. Например, весь процесс начинается с окисления насыщенного углеводорода и его превращения в ненасыщенный, затем полученное вещество окисляется до образования спирта; спирт, в свою очередь, образует альдегид, из альдегида «вытекает» карбоновая кислота. В результате всей процедуры мы получаем углекислый газ (при записи уравнения не забываем поставить соответствующую стрелочку ) и воду.

Это окислительно-восстановительная реакция, причём в большинстве случаев органическое вещество проявляет восстановительные свойства, а само окисляется. Для каждого задействованного элемента определена своя классификация – он либо восстановитель, либо окислитель, и мы даём название, исходя из результата ОВР.

Способность органических веществ к окислению

Теперь мы знаем, что в процессе ОВР (окислительно-восстановительной реакции) принимают участие окислитель, забирающий электроны и имеющий отрицательный заряд, и восстановитель, отдающий электроны и имеющий положительный заряд. Однако не каждое вещество может вступать в процесс, который мы с вами рассматриваем. Чтобы было проще понять, рассмотрим по пунктам.

Соединения не окисляются:

  • Алканы – по-другому называются парафины или насыщенные углеводороды (например, метан, имеющий формулу CH4);
  • Арены – это ароматические органические соединения. Среди них не окисляется бензол (по идее эту реакцию можно провести, но путём нескольких долгих шагов; самостоятельно окисление бензола не произвести);
  • Третичные спирты – это спирт, у которого гидроксогруппа OH связывается с третичным атомом углерода;
  • Фенол – по-другому называется карболовая кислота и в химии записывается в виде формулы C6H5OH.

Примеры органических веществ, способных к окислению:

  • Алкены;
  • Алкины (в результате мы проследим образование альдегида, карбоновой кислоты или кетона);
  • Алкадиены (образуются либо многоатомные спирты, либо кислоты);
  • Циклоалканы (при наличии катализатора образуется дикарбоновая кислота);
  • Арены (до бензойной кислоты могут окисляться любые вещества, которые имеют схожее с бензолом строение, то есть его гомологи);
  • Первичные, вторичные спирты;
  • Альдегиды (имеют способность окисляться то карбонов);
  • Амины (при окислении происходит образование одного или нескольких соединений с нитрогруппойNO2).

Окисление органических веществ в клетке организмов растений, животных и человека

Это наиболее важный вопрос не только для тех людей, которые интересуются химией. Подобного рода знания должен иметь каждый, чтобы сформировать верное представление о разных процессах в природе, о ценности каких-либо веществ в мире и даже о самом себе – человеке.

Из курсов школьной биологии вы, наверное, уже в курсе, что окисление органики играет не последнюю биологическую роль в организме человека. В результате окислительно-восстановительных реакций происходит расщепление БЖУ (белков, жиров, углеводов): в клетках выделяется теплота, АТФ и другие носители энергии, и наше тело всегда обеспечено достаточным запасом для выполнения действий и нормального функционирования систем органов.

Протекание данного процесса способствует поддержанию постоянной температуры тела в организме не только человека, но и любого другого теплокровного животного, а также помогает регулировать постоянство внутренней среды (это называется гомеостаз), обмен веществ, обеспечивает качественную работу органоидов клетки, органов, а также выполняет ещё множество необходимых функций.

При фотосинтезе растениями поглощается вредный углекислый газ и образуется кислород, необходимый для дыхания.

Биологическое окисление органических веществ может протекать исключительно с использованием различных переносчиков электронов и ферментов (без них данный процесс длился бы невероятно долго).

Роль окисления органики в промышленности

Если говорить о роли окисления органики в промышленности, то это явление применяется в синтезе, в работе уксуснокислых бактерий (при неполном органическом окислении они образовывают ряд новых веществ), а в некоторых случаях с органикой возможно также производство взрывоопасных веществ.

Принципы составления уравнений в органической химии

В химии не обходится без составления уравнения – это своего рода язык данной науки, на котором могут говорить все учёные планеты независимо от национальности и понимать друг друга.

Однако наибольшие трудности вызывает составление уравнений, когда предстоит изучение органической химии.

Для разборки этой темы требуется очень большой промежуток времени, поэтому здесь подобран лишь краткий алгоритм действий для решения цепочки уравнений с некоторыми пояснениями:

  1. Во-первых, мы сразу смотрим, сколько реакций протекает в данном процессе, нумеруем их. Также определяем классы, названия веществ исходных и веществ, которые в итоге образуются;
  2. Во-вторых, необходимо поочерёдно выписать все уравнения и узнать тип их реакций (соединение, разложение, обмен, замещение) и условия.
  3. После этого можно составить электронный балансы, а также не забываем расставлять коэффициенты.

Реакции окисления органических веществ и их конечные продукты образования

Окисление бензола

Даже в самых агрессивных условиях бензол не подвержен окислению. Однако гомологи бензола способны окисляться под воздействием раствора перманганата калия в нейтральной среде до образования бензоата калия.

Если сменить нейтральную среду на кислотную, то гомологи бензола способны окисляться перманганатом или дихроматом калия с итоговым образованием бензойной кислоты.

Формула образование бензойной кислоты

Окисление алкенов

При окислении алкенов неорганическим окислителями конечными продуктами являются так называемые двухатомные спирты — гликогены. Восстановителями в данных реакциях являются атомы углерода.

Наглядный тому пример является химическая реакция раствора перманганата калия в связи с слабой щелочной средой.

Агрессивные условия окисления приводят тому, что углеродная цепь разрушается по двойной связи с итоговыми продуктами образования в виде двух кислот. Причем если среда с повышенным содержанием щелочи образуется две соли. Также продуктами вследствие распада цепи углерода может образовываться кислота и диоксид углерода, а вот в условиях сильной щелочной среды — продуктами окислительной реакции выступают соли карбоната.

Алкены способны окисляться при погружении в кислотную среду дихромата калия по аналогичной схеме приведенной в первых двух примерах.

Окисление алкинов

В отличие от алкенов, алкины окисляются в более агрессивной среде. Разрушение углеродной цепи происходит по тройной связи. Общим свойством с алкенами являются их восстановители в лице атомов углерода.

Продуктами реакции на выходе являются диоксид углерода и кислоты. Помещенный перманганат калия в кислотную среду будет являться окислителем.

Продуктами окисления ацетилена, в случае его погружения в нейтральную среду с перманганатом калия, является оксалат калия.

При смене нейтральной среды на кислотную реакция окисления протекает до образования углекислого газа или щавелевой кислоты.

Окисления альдегидов

Альдегиды легко подвержены окислению благодаря их свойствам быть сильными восстановителями. В качестве окислителей для альдегидов можно выделить как и в предыдущих вариантах перманганат калия с дихроматом калия, а также преимущественно свойственных для альдегидов раствор гидроксиддиамина серебра — OH и гидроксид меди — Cu(OH)2. Важным условием для протекания реакции окисления альдегидов является влияние температуры.

На видео можно видеть как определяют присутствие альдегидов в реакции с гидроксидом меди.

Альдегиды способны окисляться до карбоновых кислот под влиянием гидроксиддиамина серебра в виде раствора с выделением солей аммония. Такая реакция получила название «серебряного зеркала».

Далее на видео продемонстрирована интересную реакцию, которая носит название «серебряное зеркало». Этот опыт протекает во взаимодействии глюкозы, которая является также альдегидом, с раствором аммиаката серебра.

Окисление спиртов

Продукт окисления спиртов зависит от типа атома углерода с которым связана группа OH спирта. Если группа связана первичным атомом углерода, то продуктом окисления будут альдегиды. В случае если OH группа у спирта связана со вторичным атомом углерода, то продуктом окисления являются кетоны.

Альдегиды, в свою очередь образовавшиеся при окислении спиртов, далее могут окисляться до образования кислот. Это достигается путем окисления первичных спиртов дихроматом калия в кислотной среде при кипении альдегида, которые в свою очередь при испарении не успевают окисляться.

При условии избыточного присутствия таких окислителей, как перманганат калия (KMnO4) и дихромат калия (K2Cr2O7) практически в любых условиях первичные спирты способны окисляться с выделением карбоновых кислот, в вторичные спирты в свою очередь — кетонов, примеры реакций которых с продуктами образования рассмотрим ниже.

Этиленгликоль или так называемый двухатомный спирт в зависимости от среды может окисляться с образованием таких продуктов как щавелевая кислота или оксалата калия. Если этиленгликоль находится в растворе перманганата калия с добавлением кислоты, образуется щавелевая кислота, в случае если двухатомный спирт в этом же растворе перманганата калия либо дихромата калия, но при этом в нейтральной среде, то образуется оксалат калия. Рассмотрим эти реакции.

Мы выяснили всё, что необходимо понимать на первых порах и даже начали разбирать такую нелёгкую тему как решение и составление уравнений. В заключение можно только сказать, что сбалансированная практика и частые занятия помогут быстрее закрепить пройденный материал и научиться решать задачи.

ЛЕКЦИЯ 9

Образование и разложение органических веществ.

(Фотосинтез, дыхание, транспирация)

Рассмотрим подробнее процессы аккумуляции солнечной энергии при образовании органических веществ и рассеивании ее при разрушении этих веществ. Жизнь на Земле зависит от потока энергии, образующейся в результате термоядерных реакций, идущих в недрах Солнца. Около 1 % солнечной энергии, достигающей Земли, преобразуется клетками растений (и некоторых бактерий) в химическую энергию синтезированных углеводов.

Образование органических веществ на свету называется фотосинтезом (гр. Свет, соединение) Фотосинтез – это накопление части солнечной энергии путем превращения ее потенциальную энергию химических связей органических веществ.

Фотосинтез - необходимое связующее звено между живой и неживой природой. Без притока энергии от Солнца жизнь на нашей планете, подчиняясь второму закону термодинамики прекратилась бы навсегда. Сравнительно недавно (конец 18 столетия) было обнаружено, что в образующихся при фотосинтезе органических веществах соотношение углерода, водорода и кислорода таково, что на 1 атом углерода приходится как бы 1 молекула воды (откуда и название сахаров – углеводы). Считалось, что углеводы образуются из углерода и воды, а кислород выделяется из СО 2 . Позже английский медик Корнелиус ван Ниль, изучая фото синтезирующие бактерии, показал, что в результате фотосинтеза серные бактерии выделяют серу, а не кислород:

Он предположил, что не СО 2 , а вода разлагается при фотосинтезе, и предложил следующее суммарное уравнение фотосинтеза:

Для водорослей и зеленых растений Н 2 А - это вода (Н 2 О). Для пурпурных серных бактерий Н 2 А – сероводорюд. Для других бактерий это может быть свободный водород или другое окисляемое вещество.

Эта идея в 30-х годах 20-го столетия была подтверждена экспериментально с использованием тяжелого изотопа кислорода (18 О).

Для водорослей и зеленых растений суммарное уравнение фотосинтеза стали записывать следующим образом:

Синтезированные растениями углеводы (глюкоза, сахароза, крахмал и др.) являются главным источником энергии для большинства гетеротрофных организмов, населяющих нашу планету. Разложение органических веществ происходит в процессе метаболизма (гр. изменение) в живых клетках.

Метаболизм – это совокупность биохимических реакции и превращений энергии в живых клетках, сопровождающихся обменом веществ между организмом и средой.

Сумма реакций, ведущих к распаду или деградации молекул и выделению энергии, называется катоболизмом , а приводящих к образованию новых молекул – анаболизмом.

Превращения энергии в живых клетках осуществляются путем переноса электронов с одного уровня на другой или от одного атома или молекулы - к другим. Энергия углеводов выделяется в метаболических процессах при дыхании организмов.

Дыхание – это процесс, в результате которого энергия, выделенная при распаде углеводов, передается на универсальную энергонесущую молекулу аденозинтрифосфорной кислоты (АТФ), где она хранится в виде высокоэнергетических фосфатных связей.

Так, например, при разложении 1 моля глюкозы выделяется 686 ккал свободной энергии (1 ккал = 4,18т10 Дж). Если бы эта энергия выделялась быстро, то большая часть ее рассеялась бы в виде теплоты. Это не принесло бы пользы клетке, а привело бы к гибельному для нее увеличению температуры. Но в живых системах есть сложные механизмы, которые регулируют многочисленные химические реакции таким образом, что энергия хранится в химических связях и затем может выделяться постепенно, по мере необходимости. У млекопитающих, птиц и некоторых других позвоночных теплота, выделяемая при дыхании, сохраняется, и поэтому температура их тела выше температуры окружающей среды. У растений скорость дыхания невелика, поэтому выделяемая теплота обычно не влияет на температуру растений. Дыхание может происходить как в аэробных (в присутствии кислорода), так и в анаэробных (бескислородных) условиях.

Аэробное дыхание - процесс, обратный фотосинтезу, т. е. синтезированное органическое вещество (С 6 Н 12 О 6) вновь разлагается с образованием СО 2 и Н 2 О с высвобождением потенциальной энергии Q пот аккумулированной в этом веществе:

Однако в отсутствие кислорода процесс может идти не до конца. В результате такого незавершенного дыхания образуются органические вещества, еще содержащие некоторое количество энергии, которая в дальнейшем может быть использована другими организмами при других типах дыхания.

Анаэробное дыхание протекает без участия газообразного кислорода. Акцептором электронов служит не кислород, а другое вещество, например уксусная кислота:

запасом энергии q 1 и может использоваться в качестве топлива или самопроизвольно окисляться и воспламеняться в природе по реакции:

Бескислородное дыхание служит основой жизнедеятельности многих сапротрофов (бактерий, дрожжей, плесневых грибков, простейших), но может встречаться и в тканях высших животных.

Брожение - это анаэробное дыхание, при котором органическое вещество само служит акцептором электронов:

а образующийся спирт также содержит

некоторое количество энергии q 2 , которая может быть использована другими организмами:

Разложение может быть результатом не только биотических, но и абиотических процессов. Так, например, степные и лесные пожары возвращают большое количество СО 2 и других газов в атмосферу и минеральных веществ в почву. Они - важный и иногда даже необходимый процесс в экосистемах, где физические условия таковы, что микроорганизмы не успевают разлагать образующиеся органические остатки. Но окончательное разложение отмерших растений и животных осуществляется, в основном, гетеротрофными микроорганизмами - редуцентами, примером которых являются широко распространенные в сточных и природных водах сапрофитные бактерии. Разложение органических веществ есть результат добывания необходимых химических элементов и энергии в процессе преобразовании пищи внутри клеток их тел. При прекращении этих процессов все биогенные элементы окажутся связанными в мертвых остатках и продолжение жизни станет невозможным. Комплекс разрушителей в биосфере состоит из огромного числа видов, которые, действуя последовательно, осуществляют распад органических веществ до минеральных. Процессы образования органических веществ и их распад называют процессами продукции (лат. создание, производство) и деструкции (лат. разрушение). Продукционно-деструкционный баланс в биосфере в целом в современных условиях является положительным. Это обусловлено тем, что не все части отмерших растений и животных разрушаются с одинаковой скоростью. Жиры, сахара и белки разлагаются достаточно быстро, а древесина (клетчатка, лигнин), хитин, кости - очень медленно. Наиболее устойчивым промежуточным продуктом разложения органических веществ является гумус (лат. почва, перегной), дальнейшая минерализация которого оченьзамедлена. Медленное разложение гумуса - одна из причинзапаздывания деструкции по сравнению с продукцией. С точки зрения химии, гумусовые вещества представляют собой продуктыконденсации (лат. - скопление, уплотнение) ароматических соединений (фенолов, бензолов и др.) с продуктами распада белков и полисахаров. для их расщепления, видимо, требуютсяспециальные ферменты, которые часто отсутствуют у почвенныхи водных сапротрофов.

Таким образом, разложение органических остатков - длительный, многоступенчатый и сложный процесс, который контролирует несколько важных функций экосистемы: возвращение элементов питания в круговорот и энергии - в систему; преобразование инертных веществ земной поверхности; образование безвредных комплексных соединений токсичных веществ; поддержание состава атмосферы, необходимого для жизни азробов. Для биосферы в целом важнейшее значение имеет отставание процессов разложения органических веществ от процессов синтеза их зелеными растениями. Именно это отставание обусловило накопление в недрах планеты горючих ископаемых, а в атмосфере кислорода. Установившийся в биосфере положительный баланс продукционно-деструкционных процессов обеспечивает жизнь аэробных организмов, в том числе и человека.

Основные закономерности водопотребления растениями.

Транспирация – это процесс испарения воды наземными частями растений.

Одна из основных физиологических функций любого организма - поддержание на достаточном уровне количества воды в теле. В процессе эволюции у организмов сформировались разнообразные приспособления к добыванию и экономному расходованию воды, а также к переживанию засушливого периода. Одни животные пустыни получают воду из пищи, другие за счет окисления своевременно запасенных жиров (на пример, верблюд, способный путем биологического окисления из 100 г жира получить 107 г метаболической воды). При этом у них минимальна водопроницаемость наружных покровов тела, преимущественно ночной образ жизни и т. д. При периодической засушливости характерно впадание в состояние покоя с минимальной интенсивностью обмена веществ.

Наземные растения получают воду главным образом из почвы. Малое количество осадков, быстрый дренаж, интенсивное испарение либо сочетания этих факторов ведут к иссушению, а избыток влаги - к переувлажнению и заболачиванию почв. Баланс влаги зависит от разницы между количеством выпавших осадков и количеством воды, испарившейся с поверхностей растений и почвы, а также путем транспирации. В свою очередь процессы испарения непосредственно зависят от относительной влажности атмосферного воздуха. При влажности, близкой к 100%, испарение практически прекращается, и если дополнительно понижается температура, то начинается обратный процесс - конденсация (образуется туман, выпадают роса, иней). Влажность воздуха как экологический фактор при своих крайних значениях (повышенной и пониженной влажности), усиливает воздействие (усугубляет) температуры на организм. Насыщение воздуха парами воды редко достигает максимального значения. Дефицит влажности - разность между максимально возможным и фактически существующим насыщением при данной температуре. Это один из важнейших экологических параметров, поскольку характеризует сразу две величины: температуру и влажность. Чем выше дефицит влажности, тем суше и теплее, и наоборот. Режим осадков - важнейший фактор, определяющий миграцию загрязняющих веществ в природной среде и вымывание их из атмосферы.

Масса воды, содержащаяся в живых организмах, оценивается в 1,1 10 3 млрд т, т. е. меньше, чем содержат русла всех рек мира. Биоценоз биосферы, заключая в себе относительно малое количество воды, тем не менее интенсивно прогоняет ее через себя. Особенно интенсивно это происходит в океане, где вода является и средой обитания, и источником пита тельных веществ и газов. Основную массу биоценоза планеты составляют продуценты. В водных экосистемах это водоросли и фитопланктон, а в наземных - растительность. В водной среде растения непрерывно фильтруют воду через свою поверхность, а на суше они извлекают воду корнями из почвы и удаляют (транспирируют) наземной частью. Так, для синтеза одного грамма биомассы высшие растения должны испарить около 100 г воды.

Наиболее мощные системы транспирации на суше - это леса, которые способны прокачать через себя всю массу воды гидросферы за 50 тыс. лет; при этом планктон океана профильтровывает всю воду океана за год, а морские организмы все вместе - всего за полгода.

В биосфере работает сложный фильтр фотосинтеза, в процессе которого вода разлагается и вместе с диоксидом углерода используется при синтезе органических соединений, необходимых для построения клеток организмов. Всю массу воды гидросферы фотосинтезирующие живые организмы могут разложить примерно за 5-б млн лет, а другие организмы примерно за такой же срок восстанавливают потерянную воду из отмирающей органической массы.

Таким образом, биосфера, несмотря на ничтожный объем заключенной в ней воды, оказывается самым мощным и сложным фильтром гидросферы на Земле.

Каскад биологических фильтров пропускает через себя массу воды, равную массе всей гидросферы за время от полугода до миллионов лет. Поэтому можно утверждать, что гидросфера - это продукт живых организмов, среда, которую они создали сами для себя. Академик В. И. Вернадский выразил это тезисом: Организм имеет дело со средой, к которой он не только приспособлен, но которая приспособлена к нему.

Развитие экосистем.

Наблюдения в природе показывают, что заброшенные поля или выжженный лес постепенно завоевываются многолетними дикими травами, затем кустарниками и, в конце концов, деревьями. Развитие экосистем во времени известно в экологии под названием экологических сукцессий (лат. преемственность, последовательность).

Экологическая сукцессия - это последовательная смена биоценозов, преемственно возникающих на одной и той же территории под воздействием природных или антропогенных факторов.

Некоторые сообщества остаются стабильными многие годы, другие быстро изменяются. Изменения происходят во всех экосистемах естественным или искусственным путем. Естественные изменения являются закономерными и управляются самим сообществом. Если сукцессионные изменения определяются в основном внутренними взаимодействиями, то это аутогенные, т. е. самопорождающиеся сукцессии. Если изменения вызываются внешними силами на входе экосистемы (шторм, пожар, воздействие человека), то такие сукцессии называют аллогенными т. е. порожденными извне. Например, вырубка в леса быстро заселяется окружающими деревьями; луг может смениться лесом. Аналогичные явления происходят в озерах, на скальных склонах, голых песчаниках, на улицах покинутых поселков и т. п. Процессы сукцессии непрерывно идут на всей планете.

Последовательные сообщества, сменяющие друг друга на данном пространстве, называются сериями или стадиями.

Сукцессия, начинающаяся на участке, прежде не занятом, называется первичной. Например, поселения лишайников на камнях: под действием выделений лишайников каменистый субстрат постепенно превращается в подобие почвы, где поселяются затем кустистые лишайники, зеленые травы, кустарники и т. л.

Если сообщество развивается на месте уже существовавшего, то говорят о вторичной сукцессии. Например, изменения, происходящие после раскорчевки или порубки леса, устройство пруда или водохранилища и т. п.

Скорость сукцессий различна. В историческом аспекте смена фауны и флоры по геологическим периодам есть не что иное, как экологические сукцессии. Они тесно связаны с геологическими и климатическими изменениями и эволюцией видов. Такие изменения происходят очень медленно. Для первичных сукцессий требуются сотни и тысячи лет. Вторичные протекают быстрее. Сукцессия начинается с несбалансированного сообщества, у которого продукция (П) органического вещества либо больше, либо меньше скорости дыхания (Д), и сообщество стремится к состоянию, где П = Д. Сукцессия, начинающаяся при П > Д называется автотрофной , а при П <Д - гетеротрофной . Отношение П/Д является функциональным показателем зрелости экосистем.

При П > Д постепенно растет биомасса сообщества (Б) и отношение биомассы к продукции Б/П, т. е- увеличиваются размеры организмов. Возрастание происходит до тех пор, пока не произойдет стабилизация системы. Состояние стабилизированной экосистемы называется климаксом (гр. лестница, зрелая ступень).

Автотрофная сукцессия - широко распространенное в природе явление, которое начинается в незаселенной среде: формирование леса на брошенных землях или восстановление жизни после извержения вулканов и других природных катастроф. Она характеризуется длительным преобладанием автотрофных организмов.

Гетеротрофная сукцессия характеризуется преобладанием бактерий и встречается тогда, когда среда пересыщена органическими веществами. Например, в реке, загрязняемой сточными водами с большим содержанием органических веществ, или на очистных сооружениях. При гетеротрофных сукцессиях энергетические запасы могут постепенно исчезать. Из-за отсутствия автотрофного процесса климакс может не наступить; тогда после исчерпания энергетических запасов экосистема может исчезнуть (разрушающееся дерево).

В климаксных системах образуется сложная сеть взаимоотношений, поддерживающих ее стабильное состояние. Теоретически такое состояние должно бытъ постоянным во времени и существовать до тех пор, пока его не нарушат сильные внешние возмущения. Чем больше отношение П/Д отклоняется от 1, тем менее зрелой и менее устойчивой является экосистема. В климаксных сообществах это отношение приближается к 1.

Тенденции изменения основных характеристик экосистем. При аутогенных сукцессиях наблюдается закономерное изменение основных признаков экологических систем (табл. 2.2).

Сукцессии связаны с функциональным сдвигом энергии в сторону увеличения затрат на дыхание, по мере того как накапливаются органическое вещество и биомасса. Общая стратегия развития экосистем состоит в возрастании эффективности использования энергии и биогенных элементов, достижении максимального разнообразия видов и усложнении структуры системы.

Сукцессия- это направленное предсказуемое развитие экосистемы до установления равновесия между биотическим сообществом – биоценозом и абиотической средой – биотопом .

В процессе сукцессии популяции организмов, функциональные связи между ними закономерно и обратимо сменяют друг друга. Несмотря на то, что экосистема не является «сверхорганизмом», между развитием экосистемы, популяции, организма, а также сообщества людей существует множество параллелей.

Эволюция экосистем, в отличие от сукцессий, представляет собой длительный процесс исторического развития. Эволюция экосистем - это история развития жизни на Земле от возникновения биосферы до наших дней. В основе эволюции лежит естественный отбор на видовом или более низком уровне. Эволюция экосистем в какой-то степени повторяется в их сукцессионном развитии. Эволюционные процессы необратимы и нецикличны. Если сравнить состав и структуру экосистем в ранние и поздние геологические эпохи, то прослеживается тенденция увеличения видового разнообразия, степени замкнутости биогеохимических циклов равномерности распределения и сохранения ресурсов внутри системы, усложнения структуры сообществ и стремления к сбалансированному состоянию, при котором темпы эволюции замедляются. В такой системе эволюция встречает множество препятствий, т.к. сообщество плотно укомплектовано и связи между организмами и популяциями прочны. При этом шансы проникнуть в такую систему извне очень малы и ее эволюция несколько заторможена.

Биомы. Физико-химические и климатические условия в разных частях биосферы различны. Климатически обусловленные крупные совокупности экосистем называют биомами, или формациями. Биом- это макросистема или совокупность экосистем, тесно связанных климатическими условиями, потоками энергии, круговоротом веществ, миграцией организмов и типом растительности. Каждый биом включает в себя ряд меньших по размеру, связанных между собой экосистем.

Биомы по местообитанию подразделяют на три основные группы: наземные, морские и пресноводные. Формирование их зависит от макроклимата, а для пресноводной - от географической широты местности. Важными факторами являются:

циркуляция воздуха,

распределение солнечного света,

сезонность климата,

высота и ориентация гор,

гидродинамика водных систем.

Наземные биомы в основном определяются растительностью, теснейшим образом зависящей от климата и образующей основную биомассу. Четкие границы между биомами встречаются редко. Чаще они размыты и представляют широкие переходные зоны. На границе двух экосистем, например на опушке леса, одновременно встречаются представители лесных и луговых видов. Контрастность среды, а потому большое обилие экологических возможностей порождает «сгущение жизни», называемое правилом краевого эффекта или правилом экотона (от гр. дом и связь). Самый богатый по числу видов биом планеты - это вечнозеленый дождевой тропический лес.

Морские биомы в меньшей степени зависят от климата, чем наземные. Они формируются в зависимости от глубины водоема и вертикального размещения организмов. Важнейшее значение имеет то, что фотосинтез возможен лишь в поверхностных горизонтах воды. Прибрежное океаническое мелководье, ограниченное с одной стороны берегом, а с другой - гребнем континентального склона (до 600 м), называется континентальным шельфом (англ. полка). Площадь шельфа составляет около 8 % от общей площади мирового океана.

В области шельфа расположена литоральная зона (лат. прибрежный). Небольшие глубины, близостъ к материкам, приливы и отливы определяют ее богатство питательными веществами, высокую продуктивность и разнообразие организмов. Здесь производится около 80 % всей биомассы океана и сконцентрирован мировой океанический промысел. От нижнего края шельфа над континентальным склоном до глубины 2 - З тыс. м простирается батиальная зона (гр. глубокий). Площадь этой зоны - чуть более 15 % от всей площади океана. По сравнению с литоралью фауна и флора батиали гораздо беднее; общая биомасса не превышает 10 % биомассы мирового океана. От подножия континентального склона до глубин 6 - 7 тыс. м находится абиссальная зона (гр. бездна) океана. Она занимает площадь более 75 % дна океана. Абиссаль характеризуется отсутствием солнечного света у дна, слабой подвижностью водных масс, ограниченностью питательных веществ, бедностью животного мира, низким видовым разнообразием, биомассой. В абиссальной области встречаются глубокие впадины – до 11 тыс. м, площадь которых около 2 % от общей площади дна океана.

Пресные внутренние водоемы, как правило, неглубоки. Ведущим фактором в этих экосистемах становится скорость циркуляции воды. По этому признаку различают лотические (лат. смывающие) текучие воды (реки, ручьи) и лентические (лат, медленно, спокойно), стоячие воды (озера, пруды, лужи).

Крупные биомы земного шара отличаются стабильностью.

краткое содержание других презентаций

«Культура клеток и тканей растений» - Функции гормонов в каллусогенезе. Факторы, влияющие на синтез. Дифференцированные клетки. Типы культур клеток и тканей. Генетическая гетерогенность. Культуры клеток растений. Дедифференцировка. Характеристика каллусных клеток. Исторические аспекты. Образование корончатых галлов. Культура одиночных клеток. Причины асинхронности. Синтез вторичных метаболитов. Дифференцировка каллусных тканей. Физические факторы.

«Листья растений» - Черешковые листья. Какой край листовой пластинки? Лист также является органом дыхания, испарения и гуттации (выделения капель воды) растения. Какой тип жилкования? Сложные листья. Охарактеризуйте лист. Листья располагаются с двух сторон черешка на некотором расстоянии друг от друга. Сидячие листья. Край листовой пластинки. Тройчатосложные. Супротивное. Мутовчатое. Жилки. Простые листья. Лист - в ботанике наружный орган растения, основной функцией которого является фотосинтез.

«Классификация плодов» - Тыквина. Померанец. Классификация плодов. Органы цветковых растений. Сравните. Ягода. Яблоко. Сочные плоды. Найди лишнее. Многокостянка. Закрепление изученного материала. Костянка. Околоплодник. Репродуктивные органы. Плоды, их классификация.

«Плоды и семена» - Стручок. Не позволяй душе лениться. Лабораторная работа. Тыквина. Зерновка. Знания. Костянка. Перенос. Дерево знаний. Вопросы для закрепления. Распространение разбрасыванием. Распространение водой. Признаки семян. Соплодие. Невзрачный цветок. Перенос на наружных покровах. Образование плода. Коробочка. Работа в группах. Многокостянка. Плод. Распространение с помощью ветра. Зачем семенам расселяться.

«Строение побега» - Клубень. Типы почек. Формируется из почек у основания стебля. Внешнее строение побега. Органические вещества. Внутреннее строение. Развитие побега из почки. Междоузлия четко выражены. Побег. Корневой клубень. Рост стебля. Стебель. Видоизменения побега. Разнообразие побегов. Клубнелуковица. Транспорт веществ по стеблю. Корневище. Луковица. Ветвление. Луковица и клубнелуковица. Чешуи. Почка.

«Задания по строению растений» - Расположение проводящих пучков. Рассмотрите рисунок и ответьте на вопросы. Горизонтальный транспорт. Подземные видоизменения побегов. Строение почек. Расположение побегов в пространстве. Растительные ткани. Ветвление побегов. Строение конуса нарастания. Внешнее строение корня. Кущение. Видоизменения корней. Рассмотрите рисунок. Дидактика для интерактивной доски по биологии. Листорасположение.

В условиях современной Земли естественного образования органических соединений из неорганических практически не происходит. Тем более невозможно возникновение живой органики. Что касается ранней Земли, то условия на ней были совершенно другими. Восстановительная атмосфера с высокой концентрацией водорода, метана и аммиака, интенсивное ультрафиолетовое излучение Солнца, не поглощаемое такой атмосферой, и мощные электрические разряды в атмосфере создавали необходимые и, видимо, достаточные условия для образования органических соединений. Действительно, лабораторные эксперименты, проведенные в условиях, моделирующих предполагаемую атмосферу ранней Земли, позволили получить ряд органических соединений, в том числе аминокислоты, входящие в состав живых белков.

Отсутствие кислорода в атмосфере явилось необходимым условием для самопроизвольного синтеза органики. Однако с точки зрения последующих превращений этот фактор оказался деструктивным. В самом деле, лишенная кислорода атмосфера практически свободно пропускает мощное ультрафиолетовое излучение (атмосфера современной Земли обладает возникшим вместе с кислородной составляющей озоновым слоем, который поглощает это излучение). Излучение, обеспечивая энергией химические реакции синтеза органических соединений, в то же время стремится сразу же их уничтожить. Поэтому образовавшиеся в атмосфере биополимеры, липиды и углеводороды, едва возникнув, были обречены. Для того чтобы не погибнуть, им необходимо было укрыться от губительного воздействия солнечного ультрафиолета. Считается, что часть этих органических соединений избежала гибели, попав в водную среду первичных водоемов.

Здесь, в водной среде, органические соединения вступали в разнообразные химические реакции, среди которых преимущество приобретали реакции, приводившие к саморазвитию наиболее активных катализаторов. Природа весьма жестко вела естественный отбор реакций циклического типа, способных к самоподдержанию, в том числе за счет энергии, выделяемой в ходе реакции. Проблема энергетического обеспечения эволюционных реакций, в частности реакций полимеризации (объединение однотипных молекул – мономеров в макромолекулы) выглядит наиболее важной на этом этапе эволюции, поскольку водная среда мало способствует активизации химических реакций. Именно поэтому «выжить» могли только высокоэнергетические реакции с участием особо эффективных, саморазвивающихся катализаторов.

Здесь наступил один из узловых моментов развития. Допустим, что необходимые для перехода к биоэволюции химические реакции возникли и приобрели свойство самоподдержания. Для их сохранения (и, конечно же, дальнейшего развития) соответствующие объемы должны быть как-то изолированы от неорганизованной окружающей среды, не потеряв при этом возможности обмениваться с ней веществом и энергией. Одновременное выполнение двух этих, на первый взгляд, несовместимых условий было обязательным для выхода химической эволюции на качественно новый уровень.

Такая возможность нашлась благодаря образованию из липидов особых структур – мембранных оболочек . Результаты современных лабораторных экспериментов дают основания полагать, что при определенной концентрации липидов в воде и внешних условиях, моделирующих состояние атмосферы и гидросферы тогдашней Земли, происходит характерный процесс самоорганизации, приводящий ксамосборке липидных оболочек со свойствами мембран .

Далее нетрудно допустить, что процессы отбора циклических каталитических реакций и самосборки липидных оболочек совпали во времени и в пространстве. Так вполне могли появиться природные образования, изолированные от деструктивного воздействия окружающей среды, но связанные с нею обменом веществ. Самоподдерживающиеся реакции стали протекать в своеобразном реакторе, способствующем сохранению существенной неравновесности заключенной в нем системы биополимеров. Теперь положение химических реагентов приобрело упорядоченность, процессы адсорбции на оболочке способствовали повышению их концентрации и, тем самым, активизации каталитического эффекта. По сути, состоялся переход от химических смесей к организованным системам, приспособленным к дальнейшему восходящему развитию .

Рассматривается также и ряд других моделей, приводящих к подобному важному, но всё же промежуточному событию на пути перехода к биологической эволюции. Одна из них рассматривает процессы, связанные с образованием в атмосфере исходных органических соединений, в предположении, что ранняя Земля с ее разреженной восстановительной атмосферой была холодным телом, имевшим температуру порядка – 50°С. Существенным пунктом этой модели является предположение о том, что атмосфера в этих условиях была ионизована, т. е. находилась в состоянии холодной плазмы. Эта плазма считается основным источником энергии для реакций химической эволюции. Предположение же о низкой температуре привлечено для объяснения сохранения образовавшихся в атмосфере биополимеров: замерзая, они выпадали на ледяной покров Земли и в этом природном холодильнике хранились «до лучших времен». В таком виде ультрафиолетовое излучение и мощные разряды электричества были для них уже не столь опасны.

Далее предполагается, что «лучшие времена» наступили с активизацией тектонической деятельности, началом массового извержения вулканов. Выделение продуктов вулканической деятельности в атмосферу привело к ее уплотнению и смещению границы ионизации в более высокие слои. С изменением температурных условий ледяной покров, естественно, растаял, образовались первичные водоемы, в которых после размораживания начали активную химическую деятельность накопленные за длительное время биополимеры, липиды и углеводороды. Можно поэтому говорить об их высокой концентрации в «первичном бульоне» (так нередко называют образовавшуюся субстанцию), что явилось еще одним положительным фактором с точки зрения активизации химической эволюции.

Неоднократными экспериментами подтверждено, что в процессе размораживания липиды действительно демонстрируют самосборку, образуя микросферы с диаметром в десятки микрометров. Не суть важно, как оказываются внутри них биополимеры – проникают ли сквозь мембранный слой или липидная оболочка обволакивает их постепенно. Важно то, что в объеме, окруженном мембранной оболочкой, мог начаться новый этап эволюции – переход от химических реакций к биохимическим.

Что же касается решающего момента – перехода к простейшей клетке, то он может рассматриваться как результат характерного для самоорганизации вещества скачка. Для подготовки этого скачка в процессе химической эволюции должны были появиться еще некоторые структуры, способные выполнять необходимые для протоклетки функции. Такими структурными фрагментами считаются группировки , обеспечивающие перенос заряженных частиц, что необходимо для транспорта вещества. Другие группировки должны обеспечить снабжение энергией – в основном это молекулы фосфоросодержащих соединений (система АДФ–АТФ). Наконец, необходимо образование полимерных структур типа ДНК и РНК, главная функция которых – служитькаталитической матрицей для самовоспроизводства.

Не следует упускать из виду еще один узловой момент, связанный с нарушением изомерной симметрии. Каким образом произошел выбор в пользу левовращающего органического вещества, можно только догадываться, однако то, что эта флуктуация непосредственно предшествовала зарождению жизни, представляется совершенно естественным. Можно предполагать, что биологическая эволюция была «запущена» возникновением левовращающей протоклетки.

Одно из основных предположений гетеротрофной гипотезы заключается в том, что возникновению жизни предшествовало накопление органических молекул. Сегодня мы называем органическими молекулами все те молекулы, которые содержат углерод и водород. Мы называем молекулы органическими еще и потому, что первоначально считалось, что соединения такого рода могут синтезироваться только живыми организмами.

Однако еще в 1828г. химики научились синтезировать мочевину из неорганических веществ. Мочевина- это органическое соединение, которое у многих животных выделяется в моче. Живые организмы считались единственным источником мочевины до тех пор, пока ее не удалось синтезировать в лаборатории. Лабораторные условия, в которых химиками были получены органические соединения, видимо, в какой-то степени имитируют условия среды на земле в ранний период ее существования. Эти условия могли, по мнению авторов гетеротрофной гипотезы, привести к образованию органических соединений из атомов кислорода, водорода, азота и углерода.

Лауреат Нобелевской премии Гарольд Юри, работающий в Чикагском университете, заинтересовался вопросами эволюции химических соединений на Земле в условиях раннего периода ее существования. Он обсуждал эту проблему с одним из своих студентов- Стенли Миллером. В мае 1953 г. Миллер опубликовал статью под названием «Образование аминокислот в условиях, близких к условиям, существовавшим на Земле в ранний период», в которой указывал, что А.И. Опарин высказывал впервые идею о том, что основа жизни- органические соединения образовались в тот период, когда в атмосфере Земли были метан, аммиак, вода и водород, а не двуокись углерода, азот, кислород и вода. Недавно эта идея получила подтверждения в роботах Юри и Бернала.

Для того чтобы проверить эту гипотезу, в специально созданном приборе через систему труб пропускалась смесь газов CH4, NH3, H2O и H2, и в определенный момент времени создавался электрический момент времени создавался электрический разряд. В полученной смеси определяли содержание аминокислот.

В сконструированном Миллером воздухонепроницаемом приборе, наполненном метаном, водородом и аммиаком, пропускали электрический разряд. Водяной пар поступал из специального приспособления, связанного с основной частью прибора. Пар, проходя через прибор, охлаждался и конденсировался в виде дождя. Таким образом, в лаборатории были довольно точно воспроизведены условия, существовавшие в атмосфере первобытной Земли. К ним относятся тепло, дождь и кратковременные вспышки света. Через неделю Миллер проанализировал газ, который находился в экспериментальных условиях. Он обнаружил, что образовавшаяся ранее бесцветная жидкость стала красной.

Химический анализ показал, что в жидкости появились некоторые соединения, которых не было в начале опыта. Атомы некоторых молекул газа рекомбинировали, образовывая новые и более сложные молекулы-органических молекул. Анализируя соединения, находящиеся в жидкости, Миллер обнаружил, что там образуются органические молекулы, известные под названием аминокислоты. Аминокислоты состоят из атомов углерода, водорода, кислорода и азота.

Каждый углеродный атом способен образовать четыре химические связи с другими атомами. Опыты Миллера указывают на то, что аналогичные процессы могли происходить в атмосфере Земли в ранний период ее существования. Эти опыты явились важным подтверждением гетеротрофной гипотезы.