Историческое развитие жизни на земле кратко. Как зарождалась жизнь на Земле: история, особенности возникновения и интересные факты

ЭТАПЫ РАННЕЙ ЭВОЛЮЦИИ:

Коацерваты (появление доклеточных форм жизни)

Прокариотические клетки (возникновение жизни, клеточных форм жизни – анаэробных гетеротрофов)

Хемосинтезирующие бактерии (появление хемосинтеза)

Фотосинтезирующие бактерии (появление фотосинтеза, в дальнейшем это приведет к возникновению озонового экрана, который позволит организмам выйти на сушу)

Аэробные бактерии (появление кислородного дыхания)

Эукариотические клетки (возникновение эукариот)

Многоклеточные организмы

- (выход организмов на сушу)

ЭТАПЫ ЭВОЛЮЦИИ РАСТЕНИЙ:

- (появление фотосинтеза у прокариот)

Одноклеточные водоросли

Многоклеточные водоросли

Риниофиты, Псилофиты (выход растений на сушу, дифференциация клеток и появление тканей)

Мхи (появление листьев и стебля)

Папоротники, Хвощи, Плауны (появление корней)

Покрытосеменные (появление цветка и плода)

ЭТАПЫ ЭВОЛЮЦИИ ЖИВОТНЫХ:

Простейшие

Кишечнополостные (появление многоклеточности)

Плоские черви (возникновение двусторонней симметрии)

Круглые черви

Кольчатые черви (расчленение тела на сегменты)

Членистоногие (возникновение хитинового покрова)

Бесчерепные (образование хорды, предки позвоночных)

Рыбы (возникновение мозга у позвоночных)

Кистеперые рыбы

Стегоцефалы (переходные формы между рыбами и земноводными)

Земноводные (возникновение лёгких и пятипалой конечности)

Пресмыкающиеся

Яйцекладущие млекопитающие (возникновение четырехкамерного сердца)

Плацентарные млекопитающие

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ:
ЗАДАНИЯ ЧАСТИ 2:

Задания

1. Установите последовательность эволюционных процессов на Земле в хронологическом порядке
1) выход организмов на сушу
2) возникновение фотосинтеза
3) формирование озонового экрана
4) образование коацерватов в воде
5) появление клеточных форм жизни

Ответ


2. Установите последовательность эволюционных процессов на Земле в хронологическом порядке
1) возникновение прокариотических клеток
2) образование коацерватов в воде
3) возникновение эукариотических клеток
4) выход организмов на сушу
5) появление многоклеточных организмов

Ответ


3. Установите последовательность, отражающую этапы эволюции протобионтов. Запишите соответствующую последовательность цифр.
1) анаэробные гетеротрофы
2) аэробы
3) многоклеточные организмы
4) одноклеточные эукариоты
5) фототрофы
6) хемотрофы

Ответ


4. Установите последовательность возникновения групп организмов в эволюции органического мира Земли в хронологическом порядке. Запишите соответствующую последовательность цифр.
1) гетеротрофные прнокариоты
2) многоклеточные организмы
3) аэробные организмы
4) фототрофные организмы

Ответ


Установите последовательность формирования ароморфозов в эволюции хордовых животных
1) возникновение легких
2) образование головного и спинного мозга
3) образование хорды
4) возникновение четырехкамерного сердца

Ответ


Расположите органы животных в порядке их эволюционного возникновения. Запишите соответствующую последовательность цифр.
1) плавательный пузырь
2) хорда
3) трехкамерное сердце
4) матка
5) спинной мозг

Ответ


Установите последовательность появления ароморфозов в процессе эволюции позвоночных животных на Земле в хронологическом порядке. Запишите соответствующую последовательность цифр
1) размножение яйцами, покрытыми плотными оболочками
2) формирование конечностей наземного типа
3) появление двухкамерного сердца
4) развитие зародыша в матке
5) кормление молоком

Ответ


Установите последовательность формирования ароморфозов в эволюции беспозвоночных животных
1) возникновение двусторонней симметрии тела
2) появление многоклеточности
3) возникновение членистых конечностей, покрытых хитином
4) расчленение тела на множество сегментов

Ответ


Установите правильную последовательность появления на Земле основных групп животных. Запишите цифры, под которыми они указаны.
1) Членистоногие
2) Кольчатые черви
3) Бесчерепные
4) Плоские черви
5) Кишечнополостные

Ответ


Установите, в какой последовательности следует расположить типы беспозвоночных животных, учитывая усложнение их нервной системы в эволюции
1) Плоские черви
2) Членистоногие
3) Кишечнополостные
4) Кольчатые черви

Ответ


Установите последовательность усложнения организации указанных животных в процессе эволюции
1) дождевой червь
2) обыкновенная амеба
3) белая планария
4) майский жук
5) нематода
6) речной рак

Ответ


Установите последовательность процессов, происходящих в ходе эволюции растений на Земле, в хронологическом порядке. Запишите в ответе соответствующую последовательность цифр.
1) возникновение эукариотической фотосинтезирующей клетки
2) четкое деление тела на корни, стебли, листья
3) выход на сушу
4) появление многоклеточных форм

Ответ



1) зеленые водоросли
2) хвощевидные
3) семенные папоротники
4) риниофиты
5) голосеменные

Ответ


Установите, в какой хронологической последовательности появились на Земле основные группы растений
1) Псилофиты
2) Голосеменные
3) Семенные папоротники
4) Одноклеточные водоросли
5) Многоклеточные водоросли

Ответ


Установите последовательность систематического положения растений, начиная с наименьшей категории. Запишите соответствующую последовательность цифр.
1) псилофиты
2) одноклеточные водоросли
3) многоклеточные водоросли
4) голосеменные
5) папоротниковидные
6) покрытосеменные

Ответ


Установите, в какой последовательности происходило развитие растительного мира на Земле
1) возникновение и господство покрытосеменных
2) возникновение водорослей
3) возникновение и господство голосеменных
4) выход растений на сушу
5) возникновение и господство папоротникообразных

Ответ


Установите последовательность ароморфозов в эволюции растений, обусловивших появление более высокоорганизованных форм
1) дифференциация клеток и появление тканей
2) появление семени
3) образование цветка и плода
4) появление фотосинтеза
5) формирование корневой системы и листьев

Ответ


Установите правильную последовательность возникновения важнейших ароморфозов у растений. Запишите соответствующую последовательность цифр.
1) возникновение многоклеточности
2) появление корней и корневищ
3) развитие тканей
4) образование семени
5) возникновение фотосинтеза
6) возникновение двойного оплодотворения

Ответ


Расположите растения в последовательности, отражающей усложнение их организации в процессе эволюции систематических групп, к которых они принадлежат.
1) Хламидомонада
2) Псилофит
3) Сосна обыкновенная
4) Папоротник орляк
5) Ромашка лекарственная
6) Ламинария

Ответ


Установите правильную последовательность важнейших ароморфозов у растений. Запишите цифры, под которыми они указаны.
1) Фотосинтез
2) Образование семян
3) Появление вегетативных органов
4) Возникновение цветка у плода
5) Возникновение многоклеточности


Первые живые организмы были анаэробными гетеротрофами, не имели внутриклеточных структур и были похожи по строению на современных прокариотов. Они получали пишу и энергию из органических веществ абиогенного происхождения. Но за время химической эволюции, которая длилась 0,5-1,0 млрд лет, условия на Земле изменились. Запасы органических веществ, которые синтезировались на ранних этапах эволюции, постепенно истощались, и между первичными гетеротрофами возникала жёсткая конкуренция, которая ускорила появление автотрофов.
Самые первые автотрофы были способны к фотосинтезу, т. е. использовали в качестве источника энергии солнечную радиацию, но кислород при этом не образовывали. Лишь позднее появились цианобактерии, способные к фотосинтезу с выделением кислорода. Накопление кислорода в атмосфере привело к образованию озонового слоя, который защитил первичные организмы от ультрафиолетового излучения, но при этом прекратился абиогенный синтез органических веществ. Наличие кислорода привело к образованию аэробных организмов, которые сегодня составляют большинство среди живых организмов.
Параллельно с совершенствованием обменных процессов происходило усложнение внутреннего строения организмов: образовывались ядро, рибосомы, мембранные
органоиды, т. е. возникали эукариотические клетки (рис. 52). Некоторые первичные
гетеротрофы вступали в симбиотические отношения с аэробными бактериями. Захватив их, гетеротрофы начинали использовать их в качестве энергетических станций. Так возникли современные митохондрии. Эти симбионты дали начало животным и грибам. Другие гетеротрофы захватывали не только аэробных гетеротрофов, но и первичных фото синтетиков - цианобактерий, которые вступали в симбиоз, образуя нынешние хлоропласты. Так появились предшественники растений.

Рис. 52. Возможный путь образования эукариотических организмов

В настоящее время живые организмы возникают только в результате размножения. Самозарождение жизни в современных условиях невозможно по нескольким причинам. Во-первых, в условиях кислородной атмосферы Земли органические соединения быстро разрушаются, поэтому не могут накопиться и усовершенствоваться. А во-вторых, в настоящее время существует огромное количество гетеротрофных организмов, которые используют любое скопление органических веществ для своего питания.
Вопросы для повторения и задания
Какие космические факторы на ранних этапах развития Земли явились предпосылками для возникновения органических соединений? Назовите основные стадии возникновения жизни согласно теории биопоэза. Как образовывались, какими свойствами обладали и в каком направлении эволюционировали коацерваты? Расскажите, как возникли пробионты. Опишите, как могло происходить усложнение внутреннею строения первых гетеротрофов. Почему невозможно самозарождение жизни в современных условиях?
Подумайте! Выполните! Объясните, почему в настоящее время на нашей планете невозможно зарождение жизни из веществ неорганической природы. Как вы считаете, почему именно море стало первичной средой развития жизни? Примите участие в дискуссии «Возникновение жизни на Земле». Выскажите свою точку зрения по этому вопросу.
Работа с компьютером
Обратитесь к электронному приложению. Изучите материал и выполните задания.


Эукариоты, эубактерии и архебактерии. Сравнивая последовательности нуклеотидов в рибосомных РНК (рРНК), учёные пришли к выводу, что все живые организмы нашей планеты можно разделить на три группы: эукариоты, эубактерии и архебактерии. Две последние группы - прокариотические организмы. В 1990 г. Карл Вёзе - американский исследователь, построивший на основании рРНК филогенетическое древо всех живых организмов, предложил для этих трёх групп термин «домены».
Поскольку генетический код у организмов всех трёх доменов один и тот же, была выдвинута гипотеза, что они имеют общею предка. Этого гипотетического предка назвали «прогенот», т. е. прародитель. Предполагают, что эубактерии и архебактерии могли произойти от прогенота, а современный тип эукариотической клетки, по-видимому, возник в результате симбиоза древнего эукариота с эубактериями.

В архейской эре возникли первые живые организмы. Они были гетеротрофами и в качестве пищи использовали органические соединения «первичного «бульона». Первыми жителями нашей планеты были анаэробные бактерии . Важнейший этап эволюции жизни на Земле связан с возникновением фотосинтеза, что обуславливает разделение органического мира на растительный и животный. Первыми фотосинтезирующими организмами были прокариотические (доядерные) цианобактерии и синезеленые водоросли. Появившиеся затем эукариотические зеленые водоросли выделяли в атмосферу из океана свободный кислород, что способствовало возникновению бактерий, способных жить в кислородной среде. В это же время – на границе архейской протерозойской эры произошло еще два крупных эволюционных события – появились половой процесс и многоклеточность .

Чтобы яснее представить значение двух последних ароморфозов, остановимся на них подробнее.Гаплоидные организмы (микроорганизмы, синезеленые) имеют один набор хромосом. Каждая новая мутация сразу же проявляется у них в фенотипе. Если мутация полезна, она сохраняется отбором, если вредна, устраняется отбором. Гаплоидные организмы непрерывно приспосабливаются к среде, но принципиально новых признаков и свойств у них не возникает. Половой процесс резко повышает возможность приспособления к условиям среды, вследствие создания бесчисленных комбинаций в хромосомах. Диплоидность , возникшая одновременно с оформленным ядром, позволяет сохранить мутации в гетерозиготном состоянии и использовать их как резерв наследственной изменчивости для дальнейших эволюционных преобразований. Кроме того, в гетерозиготном состоянии многие мутации часто повышают жизнеспособность особей и, следовательно, увеличивают их шансы в борьбе за существование.

Возникновение диплоидности и генетического разнообразия одноклеточных эукариот, с одной стороны, обусловили неоднородность строения клеток и их объединение в колонии, с другой – возможность «разделения труда» между клетками колонии, т.е. образование многоклеточных организмов. Разделение функций клеток у первых колониальных многоклеточных организмов привело к образованию первичных тканей – эктодермы и энтодермы, что в дальнейшем дало возможность для возникновения сложных органов и систем органов. Совершенствование взаимодействия между клетками сначала контактного, а затем с помощью нервной и эндокринной систем обеспечило существование многоклеточного



организма как единого целого.

Пути эволюционных преобразований первых многоклеточных были различны. Некоторые перешли к сидячему образу жизни и превратились в организмы типа губок . Другие стали ползать с помощью ресничек. От них произошли плоские черви. Третьи сохранили плавающий образ жизни, приобрели рот и дали начало кишечнополостным.

3.История Земли, со времени появления на ней органической жизни и до появления на ней человека, разделяется на три больших периода - эры, резко отличающиеся одна от другой, и носящих названия: Палеозой - древняя жизнь, Мезозой - средняя, Неозой - новая жизнь.

Из них самый большой по времени - палеозой, он иногда разделяется на две части: ранний палеозой и поздний, так как астрономические, геологические, климатические и флористические условия позднего резко отличаются от раннего. В первый входят: кембрийский, силурийский и девонский периоды, во второй - каменноугольный и пермский.

До палеозоя была архейская эра, но тогда еще не было жизни. Первая жизнь на Земле - это водоросли и вообще растения. Первые водоросли зародились в воде: так представляется современной науке возникновение первой органической жизни, и только позже появляются моллюски, питающиеся водорослями.

Водоросли переходят в наземную траву, гигантские травы переходят в травовидные деревья палеозоя.

В девонский период на Земле появляется буйная растительность, а в воде -жизнь в виде ее мелких представителей: простейших, трилобитов и т.д. Теплый климат - на всем земном шаре, ибо нет еще современного неба с его солнцем, луной и звездами; все было покрыто густым, слабопроницаемым, мощным туманом из водяных паров, еще в колоссальном количестве окружающих землю, и только часть осела в водные бассейны океанов. Земля несется в холодном мировом пространстве, но тогда она была одета в теплую, непроницаемую оболочку. Вследствие парникового (оранжерейного) эффекта весь ранний палеозой, включая даже и каменноугольный период, имеет тепловодную флору и фауну по всей земле: и на Шпицбергене, и в Антарктике - всюду залежи каменного угля, являющегося продуктом тропического леса, всюду была тепловодная морская фауна. Тогда лучи солнца не проникали непосредственно на землю, но преломлялись под известным углом через пары и освещали ее тогда иначе, чем сейчас: ночь была не такой темной и не такой длинной, а день не таким ярким. Сутки были короче нынешних. Не было ни зимы, ни лета, нет еще астрономических и геофизических причин для этого. Залежи каменного угля состоят из деревьев, не имеющих годичных колец, их структура трубчатая, как у травы, а не кольцевая. Значит, времен года не было. Не было и климатических поясов, тоже из-за парникового эффекта.

Современная палеонтология уже достаточно изучила все виды живых организмов кембрийского периода: около тысячи различных видов моллюсков, но есть основания полагать, что все же первая растительность и даже первые моллюски появились в конце архейской эры.

В следующий, силурийский период, количество моллюсков увеличивается до 10000 разновидностей, а в девонский период появляются двоякодышащие рыбы, то есть рыбы, не имеющие позвоночника, но покрытые панцирем, как переходная форма от моллюсков к рыбам. Они дышали и жабрами, и легкими. Они делают попытку превратиться в обитателей суши, но не им приходится осуществить это. Переход из моря на сушу выполнят амфибии, из класса позвоночных типа земноводных ящеров.

Первый представитель ящеров - археозавр - появляется в конце палеозоя, развитие получает в начале мезозойской эры, в триасовый период.

Отличительные свойства палеозоя: свет не был отделен от тьмы, промежуточное состояние, среднее между светом и тьмой, между днем и ночью, частично продлевается до начала карбона. На небе не было видно светил. Не было времен года и климатических поясов.

Доказательства: отсутствие годичных колец на деревьях палеозоя, кроме последнего, пермского периода, когда они впервые появляются исчезновение с этого времени всех травовидных деревьев с трубчатой структурой ствола; распространение тропической растительности по всей поверхности земли, включая полюсы; такая же теплолюбивая фауна по всей земле; образование в гигантских количествах залежей каменного угля, как результат гибели травовидных лесов, не приспособленных к прямым лучам солнца и естественно обуглившихся и погибших от ультрафиолета и солнечной радиации, как обугливается трава в жаркое лето при засухе.

С пермского периода появляются климатические пояса и распределение поздних флоры и фауны, по-разному приспособившихся к климатическим поясам.

Следующему периоду в жизни Земли соответствует вся мезозойская эра, то есть периоды: триасовый, юрский и меловой. Это был самый расцвет животного царства. Самые разнообразные и причудливые формы рептилий населяли Землю. Они были как в морях, так и на суше и в воздухе. Необходимо отметить, что весь класс насекомых появился еще в конце палеозоя, причем они были во много раз крупнее, чем их современные потомки.

Первые птицы появляются в юрский период. Размножались не только количественно, но и в разнообразные виды. У одного вида птиц рождались птенцы со своими особенностями, которые давали начало новому виду птиц, у которых в свою очередь появлялись птенцы, не совсем на них похожие. Так развивался многообразный мир живых существ. В некоторые моменты были совершенно удивительные метаморфозы.

Палеонтологи знают многие экземпляры разных ступеней в развитии птиц и ни одного промежуточного вида между ними: это птеродактили, археоптериксы и совершенно развившиеся птицы.

Птеродактили - это полуптицы, полурептилии. Это ящер, у которого сильно развились пальцы лап и между ними появились пленки, как у летучей мыши. Но следующее поколение, сохранившее тот же длинный позвоночник, по обе стороны от которого выросли перья, резко отличается от предшественников. Туловище и крылья покрылись перьями, но на крыльях остались когти для цепляния за ветви.

Голова археоптерикса - морда зверя, унаследованная от птеродактиля, с острыми крупными зубами и мягкими губами. И только в следующем поколении отпадает позвоночный хвост и голова становится головой птицы с клювом.

Наступает последняя эра - неозойская. Она включает в себя третичный и ледниковый (четвертичный) периоды. Человек появляется к концу ледникового периода. Именно в неозойскую эру появились млекопитающие. Это почти современный нам мир животных. Фауну того времени можно в некоторой степени увидеть в Африке, которой не коснулся ледник.

Самым большим вопросом является для многих вопрос об обезьянах. Большинство ученых склонны считать, что обезьяна никоим образом не может быть предшественником человека; но некоторые говорят, что должен быть какой-то общий предок. Но этого общего предка пока не нашли.

Геохронологическая таблица Земли

Эры и периоды Характерные особенности
Кайнозойская эра (новой жизни) Антропоген Неоген Палеоген Появление и развитие человека. Животный и растительный мир принял современный облик. Господство млекопитающих, птиц. Появление хвостатых лемуров, долгопятов, позднее -парапитеков, дриопитеков. Бурный расцвет насекомых. Продолжается вымирание крупных пресмыкающихся. Исчезают многие группы головоногих моллюсков. Господство покрытосеменных растений.
Мезозойская эра (средней жизни) Меловой Юрский Появление высших млекопитающих и настоящих птиц, хотя и зубастые птицы еще не распространены. Преобл. костистые рыбы. Сокращение папоротников и голосе - менных. Появление и распространение покрытосем. Господство пресмыкающихся. Появление археоптерикса. Процветание головоногих моллюсков. Господство голосеменных.
Триасовый Начало расцвета пресмыкающихся. Появление первых млекопитающих, настоящих костистых рыб.
Палеозойская эра (древней жизни) Пермский Каменноугольный Девонский Силурийский Ордовийский, Кембрийский Быстрое развитие пресмыкающихся. Возникновение зверозубых пресмыкающихся. Вымирание трилобитов. Исчезновение каменноугольных лесов. Богатая флора голосеменных. Расцвет земноводных. Возникновение первых пресмыка -ющихся. Появление летающих форм насекомых, пауков, скорпионов. Заметное уменьшение трилобитов. Расцвет папоротникообразных. Появление семенных папоротн. Расцвет щитковых. Появление кистеперых рыб. Появл. стегоцефалов. Распространение на суше споровых. Пышное развитие кораллов, трилобитов. Появление бес -челюстных позвоночных - щитковых. Выход растений на сушу -псилофиты. Широкое распространение водоросл. Процветают морские беспозвоночные. Широкое распространение трилобитов, водорослей.
Протерозойская (ранней жизни) Органические остатки редки и малочисленны, но относятся ко всем типам беспозвоночных. Появление первичных хордовых -подтипа бесчерепных.
Архейская (самая древняя в истории Земли) Следы жизни незначительны.

Самые первые организмы

Породы архея и раннего протерозоя дошли до нас в сильно измененном состоянии. Высокие давления и температуры преобразовали первоначальный облик породы, уничтожив всякие следы древней жизни. Поэтому изучение древнейшего животного и растительного мира связано с огромными трудностями. Однако за последнее столетие с помощью приборов удалось кое-что прояснить и в облике самых первых организмов на Земле .

Изучая с помощью электронного микроскопа, химических и изотопных анализов сланцы свиты Онвервахт (Родезия), возраст которых превышает 3,2 миллиарда лет, ученые Аризонского университета (США) обнаружили в них тысячи мельчайших образований сферической, нитеобразной и скорлуповидной формы. Размеры частиц не превышали 0,01 мм. Исследования проводились в специально оборудованной лаборатории, исключавшей возможность загрязнения образцов посторонними организмами. Ученые полагают, что найденные образования представляют собой окаменевшие остатки одноклеточных морских водорослей. Однако другие исследователи критически относятся к их выводам, полагая, что эти образования могут иметь небиологическое происхождение.

Похожие остатки водорослей и бактерий в породах с абсолютным возрастом 2,7-3,1 миллиарда лет обнаружены в кремнистых и железистых сланцах Северной Америки, Центральной Африки и Австралии. Эти находки дают основание полагать, что к началу архейской эры закончилась химическая и началась биологическая эволюция.

На основании сделанных находок можно предполагать, что уже в океанах архейского и раннепротерозойского возрастов господствовали простейшие одноклеточные организмы: бактерии, водоросли, грибы, простейшие животные. В архее происходит приспособление первых организмов к различным формам питания. Одни организмы усваивали в процессе фотосинтеза питательные вещества из воды, углекислоты и неорганических солей (автотрофные); другие - жили либо за счет автотрофов (гетеротрофные), либо питались разлагающимися органическими остатками (сапрофаги). Происходило деление органического мира на царство растений и царство животных.

В раннем протерозое , по-видимому, появились первые многоклеточные организмы. Это наиболее примитивные формы без четко дифференцированных тканей. К ним относятся, в частности, представителя типа губок - водные организмы, ведущие придонный прикрепленный образ жизни. Форма губок разнообразна, она может напоминать цилиндр, кубок, бокал, шар. В мягкой ткани животного имеется органический или минеральный скелет, состоящий из спикул. Представители губок до сих пор населяют моря и океаны нашей планеты, однако первые примитивные губки давно вымерли и до нас дошли лишь в ископаемом состоянии.

Несколько позднее появляются представители типа кишечнополостных. У них уже намечается дифференциация тканей и органов. Представители кишечнополостных, так же как и губок, дожили до наших дней и широко расселились в морях, океанах и даже в пресных водоемах, Среди них хорошо известные нам кораллы, медузы, гидры.

Из растений в архее и раннем протерозое активно развиваются сине-зеленые водоросли . Остатки этих водорослей в виде шаровидных, грибовидных и столбообразных известковых тел, характеризующихся тонкой концентрической слоистостью, часто находят в породах протерозоя. Считают, что первыми представителями органической жизни на Земле были именно сине-зеленые водоросли . Опыты, поставленные в МГУ еще в прошлом веке, показали, что они могут существовать в таких условиях, какие «противопоказаны» другим растениям и животным. В герметически запаянном стеклянном шаре эти водоросли жили более 16 лет! Все другие обитатели подобных стеклянных шаров быстро погибли, некоторые бактерии «держались» 12 лет, выжили лишь сине-зеленые. Это доказывает, что они могут развиваться даже в бескислородной среде.

Поразительная приспособляемость этих водорослей видна из того, что сейчас они встречаются в ледяной Арктике, в горячих гейзерах, на дне Мертвого моря, в нефтяных источниках, в горах на высоте более 5000 метров. Это единственные живые организмы, выдержавшие взрывы атомных и водородных бомб. Они обнаружены даже внутри атомных реакторов. Такая удивительная жизнестойкость позволила некоторым ученым высказать предположение о неземном происхождении сине-зеленых водорослей . Как бы то ни было, но это первые организмы, появившиеся не только в древнейших океанах, но и на суше.

Исследование американского профессора Э. Баргхорна показали, что сине-зеленые водоросли первыми стали заимствовать из воды газообразный кислород. В океанах около их колоний создавалась своеобразная «водяная» атмосфера, насыщенная кислородом. Этим кислородом дышали первые морские организмы (кишечнополостные, губки). Постепенно кислород стал выделяться в атмосферу, заполнять ее. Благодаря жизнедеятельности сине-зеленых водорослей на нашей планете начала формироваться кислородная атмосфера .

Одним из условий возникновения жизни на ранней Земле являлось существование первичной атмосферы, обладавшей восстановительными свойствами. В раннем архее первичная атмосфера Земли состояла из углекислого газа, азота, паров воды, аргона и абиогенного метана. Для зарождения жизни на Земле совершенно необходима вода в жидкой фазе. В архее светимость Солнца была на 25% ниже современной, поэтому положительные температуры могли существовать только на экваторе.

Из газов первичной атмосферы в присутствии катализаторов образовались абиогенным путем первые простейшие органические соединения: метан СН 4 , формальдегид НСОН, цианистый водород НСN, аммиакNH 3 . Из этих соединений образуются разновидности рибонуклеиновых кислот (РНК).

В последующем образовалась рибоза как продукт полимеризации формальдегида, а также синтезировался аденин как продукт полимеризации синильной кислоты. Исходные продукты аденин и рибоза послужили материалом для синтеза нуклеотидов (рис. 4.1) и аденозинтрифосфата (АТФ).

Рис. 4.1. Образование нуклеотида – звена молекулы ДНК
из трех компонентов

В позднем архее (3 млрд лет назад) на дне теплых водоемов из образовавшихся органических соединений возникли коллоидные ассоциаты, отделенные от остальной массы воды липидной оболочкой (мембраной). В дальнейшем благодаря биосимбиозу аминокислот и полупроницаемых мембран эти ассоциаты оформились в мельчайшие примитивные одноклеточные существа – протобионты (прокариоты) – безъядерные клеточные формы бактерий. Источниками энергии этих примитивных форм жизни служили анаэробные хемогенные реакции, которые энергию для дыхания получали путем брожения (хемосинтеза). Брожение – это неэффективный способ энергообеспечения, поэтому эволюция протобионтов не могла пойти дальше одноклеточной формы организации жизни.Например, в настоящее время хемосинтез используются термофильными бактериями в «черных курильщиках» срединно-океанических хребтов.

В позднем архее и раннем протерозое обнаружены формации строматолитов, питательной базой которых служил абиогенный метан. В Якутии обнаружено самое богатое в мире месторождение графита Чебер (1,5 млн т), содержание которого в горных породах превышает 27%. Особенность этого факта в том, что скопления графита обнаружены в кристаллических сланцах архейского комплекса с возрастом около 4 млрд лет.

Рис. 4.2.Схема распределения микрофоссилий в архее и раннем протерозое: 1 – 4 – нано- и цианобактерии; 5 – 10 – разнообразные микрофоссилии; 11 – 20 – отпечатки крупных морфологически
сложных форм

Выявлено и описано более 2 тыс. микроорганизмов в породах с возрастом до 4 млрд лет (рис. 4.2). Микроорганизмы в древних породах находят в прозрачных тонких шлифах 0,03 мм.В результате потери воды планктонные животные претерпели мумификацию с сохранением прижизненной окраски. Кроме того микроорганизмы претерпевали графитизацию, когда органика превращалась в графит. Высокая концентрация в графитовых гнейсах и рудах микроорганизмов доказывает первичное органогенное происхождение углерода графитовых месторождений, что согласуется с результатами изотопного анализа. Можно сказать, что месторождения графита – это кладбища древнейших микроорганизмов – своеобразной репетиции жизни на Земле.


В древних породах с возрастом до 3,8 млрд лет найдены редкие одноклеточные и многоклеточные организмы. Массовыми находками были карбонатные породы, образованные бактериями и сине-зелеными водорослями, накапливавшими карбонат кальция. Их возраст около 1,5 млрд лет.

Позже в воде появились более сложные органические вещества, способные осуществлять фотосинтез. Включение фотосинтезирующих веществ в состав клеток протобионтов сделало их автотрофными. Количество кислорода в воде стало расти. Вследствие выделения кислорода в атмосферу она из восстановительной превращалась в окислительную.

Рис. 4.3. Эволюция содержания кислорода в атмосфере
и различных форм жизни

Эукариоты возникли благодаря биосимбиозупрокариотных бактерий. Так в условиях восстановительной атмосферы возникла примитивная жизнь, создавшая в дальнейшем благоприятные условия для развития высокоорганизованной жизни на Земле.

В начале раннего протерозоя произошел резкий рост обилия фотосинтезирующих микроорганизмов – сине-зелёных водорослей. Несколько позже появились фотосинтезирующие одноклеточные организмы типа цианобактерий, способные окислять железо. Возможно, первые фотохимические организмы использовали радиацию ультрафиолетовой части спектра. После появления свободного кислорода (рис. 4.3) и озонового слоя автотрофные фотосинтезирующие организмы начали использовать излучение видимой части солнечного спектра. В то время существовало множество видов водорослей, как свободно плавающих в воде, так и прикрепленных ко дну.

Эволюция биосферы

Эволюцию применительно к живым организмам можно определить так: развитие с течением времени сложных организмов из более простых организмов.

В естествознании существует понятие «точки Пастера» – такой концентрации свободного кислорода, при которой кислородное дыхание становится более эффективным способом использования энергии Солнца, чем анаэробное брожение. Этот критический уровень равен 1% от современного уровня содержания кислорода в атмосфере. Когда концентрация кислорода приблизилась к точке Пастера, победа аэробов над анаэробами стала окончательной. Атмосфера Земли перешла этот рубеж примерно 2,5 млрд лет назад. С этого времени развитие жизни происходило под влиянием оксигенизации атмосферы и множества других условий внешней среды (рис. 4.4).

Дыхание – это процесс, обратный фотосинтезу, который высвобождает энергии в десятки раз больше, чем брожение (ферментация). Эта энергия может использоваться для роста и перемещения организмов. Животные с пользой употребили избыток этой энергии: они научились свободно перемещаться в поисках пищи. Движение требовало координации частей тела и способности принимать сложные решения. Для этого нужен был мозг, отличающий животных от растений. Таким образом, возникновение биосферы начинается с химических процессов, которые позднее приобретают характер биохимических.

Рис. 4.4. Схема эволюции состава атмосферы и биосферы

Эти события обеспечили быстрое распространение жизни в водной среде и развитие эукариотических клеток. Считается, что первые ядерные клетки появились после того, как содержание кислорода в атмосфере достигло 4% от современного уровня. Случилось это примерно 1 млрд лет назад. Примерно 700 млн лет назад появились многоклеточные организмы.

Переход от протерозоя к фанерозою явился резким геолого-биологическим рубежом, радикально изменившим экологическую обстановку на Земле. С этого момента атмосфера превратилась в окислительную, что позволило биоте перейти на обмен веществ, построенный на реакциях окисления органики, синтезируемой растениями.

Помимо увеличения парциального давления кислорода в атмосфере важными факторами влияния на эволюцию биосферы стали дрейфы континентов, климатические изменения, трансгрессии и регрессии океана. Эти факторы меняли экологические ниши биологических сообществ, усиливали их борьбу за выживание. Например, в силуре и девоне уровень океана поднялся на 250 м, в меловой период глобальная трансгрессия достигала 400 м. В периоды оледенений вода консервировалась в материковых ледниках, что понижало уровень океана на 130 м. Эти процессы существенно изменяли климат Земли. Существенное увеличение поверхности океана и уменьшение площади суши смягчало сезонные и широтные изменения климата. По мере отступления океана возрастала континентальность климата Земли и увеличивались сезонные контрасты температуры.

Сильными процессами, влиявшими на климат и его широтную зональность, являлось бактериальное удаление азота из атмосферы и колебания угла прецессии Земли в зависимости от дрейфа континентов и высокоширотных оледенений. Кроме того, изменение взаимного расположения континентов изменяло биологическую продуктивность океанов и циркуляцию океанических течений. Например, после того как к северу от Антарктиды отошла Австралия, возникло южное циркумполярное течение, отрезавшее Антарктиду от теплых омывающих её трёх океанов. Эта система климатической изоляции Антарктиды действует и в настоящее время.

Коренная перестройка метаболизма океанических организмов произошла около 400 млн лет назад, когда в царстве животных появились формы, обладающие лёгкими. Появление этого органа, приспособленного к газообмену в воздушной среде, позволило высокоорганизованной жизни выйти на сушу.

В раннем мелу (около 100 млн лет назад) началась тектоническая активность Земли, приведшая к раздвижке материков и наступлении моря на сушу. Результатом стало увеличение разнообразия животного мира по мере обособления шельфовых провинций материков. Меловая трансгрессия привела к расцвету карбонатпотребляющей фауны и микрофлоры на шельфах, в результате чего сформировались толщи писчего мела. Однако эта трансгрессия вызвала кризисные явления в жизни биоценозов коралловых атоллов океана.

Все главные рубежи геологической истории и соответствующее деление геохронологической шкалы на эры, периоды и эпохи в значительной степени обусловлены такими событиями, как столкновения и расколы материков, возникновение и закрытие экологических ниш, образование, вымирание и консервация отдельных форм жизни. Все эти процессы, в конечном счете, вызваны тектонической активностью Земли. Ярким тому примером могут служить эндемичные формы жизни Австралии и Южной Америки.

В последней фазе Валдайского оледенения (10–12 тыс. лет назад) вымерла большая часть «мамонтовой» фауны: мамонты, гигантские олени, пещерные медведи, саблезубые тигры. Это отчасти произошло по вине человека, а отчасти от того что значительно выросла влажность атмосферы, зимы стали многоснежными, что затруднило травоядным доступ к подножному корму. В результате травоядные погибали от голода, а хищники – от отсутствия травоядных.

Весьма вероятно, что неандертальцы вымерли около 30 тыс лет назад не только из-за конкуренции с кроманьонцами, но и потому, что не выдержали похолодания ледникового периода. Резкие колебания климата определяли миграцию народов и формирование расового состава людей.

Таким образом, эволюция биосферы на протяжении 3,5 мпрд лет развивалась в тесной взаимосвязи с геологической эволюцией планеты. При этом существует и обратная связь – влияние жизни на протекание геологических процессов. В.И. Вернадский писал: «На земной поверхности нет химической силы, более могущественной по своим последствиям, чем живые организмы, взятые в целом».Большая роль органической жизни отводится в седиментогенезе карбонатов и фосфоритов, угленосных и нефтегазоносных отложений, в процессах выветривания и круговорота земного вещества.

После возрастания в атмосфере концентрации кислорода до уровня 10% от современного озоновый слой стал эффективно защищать живое вещество от жесткого излучения, после чего жизнь стала постепенно выходить на сушу.Сначала на сушу проникли растения, создав там почву, потом проникли представители разных таксонов беспозвоночных и позвоночных животных. Проходили эры и периоды, когда один состав флоры и фауны сменялся другим, более прогрессивным составоми появлением всех существующих форм(рис. 4.5).

Рис. 4.5. Взрывообразный характер развития жизни на рубеже протерозоя и фанерозоя

После возрастания в атмосфере концентрации кислорода до уровня 10% от современного (2-я точка Пастера ) озоновый слой стал эффективно защищать живое вещество от жесткого излучения.

В кембрии произошел эволюционный взрыв новых форм жизни: губки, кораллы, моллюски, морские водоросли и предки семенных растений и позвоночных. В течение последующих периодов палеозойской эры жизнь заполнила Мировой океан и стала выходить на сушу.

Дальнейшее формирование наземных экосистем пошло автономно от эволюции водных экосистем. Зеленая растительность обеспечила большое количество кислорода и пищи для последующей эволюции крупных животных. Одновременно океанический планктон пополнился формами с известковыми и кремниевыми оболочками.

В конце палеозоя на Земле изменился климат. В этот период произошло усилениебиопродуктивности и были созданы огромные запасы ископаемого топлива. Позже (200–150 млн лет назад) содержание кислорода и диоксида углерода стабилизировалось на уровне наших дней.В отдельные периоды происходили изменения климата, что вызывало изменение уровня Мирового океана. Периоды общего похолодания на планете чередовались с периодами потепления с цикличностью около 100 тыс. лет.В среднем плейстоцене (45–60 тыс. лет назад) мощный ледник спустился до 48 о с.ш. в Европе и до 37 о с.ш. в Северной Америке. Таяли ледники относительно быстро – за 1 тыс. лет.

Существует непреложный закон жизни: любая группа не примитивных живых организмов рано или поздно вымирает.Неоднократно происходили массовые вымирания целых видов животных. Так, 65 млн лет назад исчезли многие рептилии (рис. 4.6). Их последние представители исчезли на границе кайнозоя. Эти вымирания были неодновременными, растянутыми на много лет и не связанными с деятельностью человека. По подсчетам палеонтологов, основная часть (до 98%) когда-либо существовавших на Земле (до 500 млн видов) видов вымерла.

Рис. 4.6. Расцвет и вымирание рептилий

Эволюционный прогресс не был случаен. Жизнь занимала новые пространства, условия существования на Земле непрерывно менялись, и всему живому приходилось к этому приспосабливаться. Сообщества и экосистемы сменяли друг друга. Возникали более прогрессивные, более подвижные формы, лучше приспособленные к новым условиям жизни.

Биосфера развивается при тесной совместной эволюции организмов. В.И. Вернадский, продолжая опыт предшествующих естествоиспытателей, сформулировал следующий принцип: «Живое происходит только от живого, между живым и неживым существует непроходимая граница, хотя и имеется постоянное взаимодействие».

Такое тесное экологическое взаимодействие больших групп организмов (например, растения и травоядные) называют коэволюцией. Коэволюция шла на Земле миллиарды лет. Антропогенные факторы возникли за очень короткое время, однако по мощности воздействия на биосферу они стали сопоставимы с природными. Природа и биосфера в современном естествознании представляются динамичными системами, проходящими через кризисные состояния, катастрофы и точки бифуркации.

Эволюция биосферы подчиняется следующим трём законам:

- закон постоянства эволюционного процесса в биосфере: эволюция живых организмов происходит постоянно, пока существует Земля;

- закон необратимости эволюции: при вымирании вида он никогда не возникнет вновь;

- закон дивергенции : из предковой формы последовательно образуются новые популяции более высоких систематических категорий.

Около 400 млн лет назад жизнь начала осваивать сушу. Сначала на сушу проникли растения, создав там почву, потом проникли представители разных таксонов беспозвоночных и позвоночные животные. К концу девона вся суша была покрыта растительностью. К концу карбона появляются голосеменные растения, летающие насекомые и первые плотоядные и растительноядные наземные позвоночные. В конце перми происходит великое вымирание (кораллы, аммониты, древние рыбы и др.).

Рис. 4.7. Фрагмент истории развития форм жизни на Земле
в мезозое и кайнозое

Первые наземные позвоночные дали начало амфибиям, а те – рептилиям. Рептилии получили расцвет в мезозое (рис. 4.7) и дали начало птицам и млекопитающим. В середине юрского периода жили гигантские четвероногие растительноядные динозавры длиной до 30 м и весом от 30 до 80 т. Появились акулы современного типа. Первые звери – предки современных млекопитающих – появились около 200 млн лет назад.

В меловом периоде Южная Америка и Африка удалялись друг от друга. В этот период произошло очередное великое вымирание: исчезают динозавры.После глобального вымирания крупных ящеров млекопитающие заняли ведущие позиции и доминируют в настоящее время. В настоящее время на Земле обитает до 3 млн видов животных.

Шло образование новых видов и вымирание тех форм, которые не выдерживали конкуренции или не приспособились к изменению природной среды. До появления человека вымирание отдельных видов происходило медленно за многие миллионы лет. Установлено, что продолжительность жизни вида птиц в среднем равна 2 млн лет, а млекопитающих 600 тыс. лет.Природная среда менялась многократно. На смену фауны оказывали влияние абиотические факторы. Происходило формирование складчатости и горообразование, менялся климат. Происходило чередование потеплений и оледенений, поднятий и понижений уровня океана, засушливый климат сменялся влажным.

Можно выделить следующие основные этапы эволюции биосферы.

1. Этап прокариотной биосферы, завершившийся 2,5 млрд лет назад, который характеризуется: восстановительной (бескислородной) водной средой обитания и хемосинтезом;появлением первых фотосинтезирующих организмов типа цианобактерий;жизнедеятельностью фотосинтезирующих прокариот до 1-ой точки Пастера.

2. Этап прокариотной биосферы с окислительной водной средой обитания, который завершился около 1,5 млрд лет назад. Этот этап, наступивший после достижения 1-ой точки Пастера характеризуется:появлением у простейших организмов дыхания, которое в 14 раз энергетически более эффективное, чем процессы брожения; возникновением первых эукариотных (имеющих ядро) одноклеточных организмов.

3. Этап одноклеточных и нетканевых организмов продолжительностью до 700 млн лет. Этап закончился около 800 млн лет назад и характеризуется: появлением биоразнообразия простейших организмов, обусловленным симбиогенезом;переходным периодом к возникновению многоклеточности организмов.

4. Этап многоклеточных тканевых организмов. На этом этапе: в девоне (около 350 млн лет назад) появилась наземная растительность;появились млекопитающие около 200 млн лет назад;господствует развитие биоразнообразия растений, грибов и животных.

5. Этап антропогенный – появление в биосфере человека разумного.