Как выглядят молекулы под микроскопом. Атомы и молекулы

Молекула воды Н2О состоит из одного атома кислорода, связанного ковалентной связью с двумя атомами водорода.

В молекуле воды главным действующим лицом является атом кислорода.

Поскольку атомы водорода друг от друга заметно отталкиваются, угол между химическими связями (линиями, соединяющими ядра атомов) водород - кислород не прямой (90°), а немного больше - 104,5°.

Химические связи в молекуле воды – полярные, так как кислород подтягивает к себе отрицательно заряженные электроны, а водород - положительно заряженные электроны. В результате вблизи атома кислорода скапливается избыточный отрицательный заряд, а у атомов водорода - положительный.

Поэтому вся молекула воды является диполем, то есть молекулой с двумя разноименными полюсами. Дипольная структура молекулы воды во многом определяет ее необычные свойства.

Молекула воды – это диамагнетик.

Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура - тетраэдр. Таково строение самой молекулы воды.

При изменении состояния молекулы воды длина сторон и угол между ними изменяются в тетраэдре.

Например, если молекула воды находится в парообразном состоянии, то угол, образованный ее сторонами, равняется 104°27". В водном состоянии угол составляет 105°03". И в состоянии льда угол равен 109,5°.

Геометрия и размеры молекулы воды для различных состояний
а - для парообразного состояния
б - для низшего колебательного уровня
в - для уровня, близкого к образованию кристалла льда, когда геометрия молекулы воды соответствует геометрии двух египетских треугольников с соотношением сторон 3: 4: 5
г - для состояния льда.

Если разделить пополам эти углы, то получим углы:
104°27": 2 = 52°13",
105°03": 2 = 52°31",
106°16": 2 = 53°08",
109,5°: 2 = 54°32".

Значит, среди геометрических рисунков молекулы воды и льда находится знаменитый египетский треугольник, в основу построения которого заложены соотношения золотой пропорции - длины сторон относятся как 3:4:5 с углом 53°08".

Молекула воды приобретает строение золотой пропорции на пути, когда вода переходит в лед, и наоборот, когда лед тает. Очевидно, за это состояние и ценится талая вода, когда ее структура в построении имеет пропорции золотого сечения.

Теперь становится понятным, что знаменитый египетский треугольник с соотношением сторон 3:4:5 "взят" из одного из состояний молекулы воды. Сама же геометрия молекулы воды образована двумя египетскими прямоугольными треугольниками, имеющими общий катет равный 3.

Молекула воды, имеющая в основе соотношение золотой пропорции, является физическим проявлением Божественной Природы, которая участвует в создании жизнь. Именно поэтому в земной природе заложена та гармония, которая присуща всему космосу.

И поэтому древние египтяне обожествляли числа 3, 4, 5, а сам треугольник считали священным и старались заложить его свойства, его гармонию в любую конструкцию, дома, пирамиды и даже в разметку полей. Кстати, украинские хаты строились тоже с применением соотношения золотой пропорции.

В пространстве молекула воды занимает некоторый объем, и покрыта электронной оболочкой в виде вуали. Если представить вид гипотетической модели молекулы в плоскости, то она похожа на крылья бабочки, на Х-образную хромосому, в которой записана программа жизни живого существа. И это является показательным фактом того, что сама вода - это обязательный элемент всего живого.

Если представить вид гипотетической модели молекулы воды в объеме, то она передает форму треугольной пирамиды, у которой имеется 4 грани, а у каждой грани по 3 ребра. В геометрии треугольная пирамида называется тетраэдром. Такое строение свойственно кристаллам.

Таким образом, молекула воды образует прочную уголковую структуру, которую она сохраняет даже, когда находится в парообразном состоянии, на грани перехода в лед, и когда превращается в лед.

Если "скелет" молекулы воды так устойчив, то и его энергетическая "пирамида" - тетраэдр тоже стоит непоколебимо.

Такие структурные свойства молекулы воды в различных условиях объясняются прочными связями между двумя атомами водорода и одним атомом кислорода. Эта связь примерно в 25 раз сильнее, чем связь между соседними молекулами воды. Поэтому легче отделить одну молекулу воды от другой, например, при нагревании, чем разрушить саму молекулу воды.

За счет ориентационных, индукционных, дисперсионных взаимодействий (сил Ван-дер-Ваальса) и водородных связей между атомами водорода и кислорода соседних молекул молекулы воды способны образовывать как случайные ассоциаты, т.е. не имеющие упорядоченной структуры, так и кластеры – ассоциаты, имеющие определенную структуру.

Согласно статистическим данным, в обычной воде находится случайных ассоциатов - 60% (деструктурированная вода) и кластеров - 40% (структурированная вода).

В результате исследований, проведенных российским ученым С. В. Зениным, были обнаружены стабильные долгоживущие кластеры воды.

Зенин установил, что молекулы воды первоначально образуют додекаэдр. Четыре додекаэдра соединяясь, образует основной структурный элемент воды - кластер, состоящий из 57 молекул воды.

В кластере додекаэдры имеют общие грани, а их центры образуют правильный тетраэдр. Это объёмное соединение молекул воды, в том числе гексамеров, которое имеет положительные и отрицательные полюса.

Водородные мостики позволяют молекулам воды объединяться самыми различными способами. Благодаря этому в воде наблюдается бесконечное разнообразие кластеров.

Кластеры могут взаимодействовать друг с другом за счет свободных водородных связей, что приводит к появлению структур второго порядка в виде шестигранников. Они состоят из 912 молекул воды, которые практически не способны к взаимодействию. Время существования такой структуры весьма велико.

Эту структуру, похожую на маленький острый кристаллик льда из 6 ромбических граней, С.В. Зенин назвал "основным структурным элементом воды”. Многочисленные эксперименты подтвердили; в воде - мириады таких кристалликов.

Эти кристаллики льда почти не взаимодействуют друг с другом, поэтому не образуют более сложных устойчивых конструкций и легко скользят гранями относительно друг друга, создавая текучесть. В этом смысле вода напоминает переохлажденный раствор, который никак не может кристаллизоваться.

другие презентации о молекулярной физике

«Энергия связи ядра» - Максимальную энергию связи (8,6 МэВ/нуклон) имеют элементы с массовыми числами от 50 до 60. - Дефект массы. Кулоновские силы стремятся разорвать ядро. Энергия связи нуклонов на поверхности меньше, чем у нуклонов внутри ядра. Uchim.net. Энергия связи атомных ядер. Удельная энергия связи. Уравнение Эйнштейна между массой и энергией:

«Строение атомного ядра» - Счетчик Гейгера Камера Вильсона. Радий (лучистый). Применение радиоактивного излучения. Мария Склодовская-Кюри и Пьер Кюри. Беккерель Антуан Анри- 1897г. Термоядерный синтез – реакция слияние легких ядер. М -массовое число - масса ядра, число нуклонов, количество нейтронов М-Z. Полоний. Цепная ядерная реакция.

«Применение фотоэффекта» - Государственное образовательное учреждение НПО Профессиональный лицей №15. История открытия и исследования фотоэффекта. Выполнила: преподаватель физики Варламова Марина Викторовна. Уравнение Эйнштейна для фотоэффекта А. Эйнштейн. Наблюдение фотоэффекта. Столетов А.Г. Сила тока насыщения пропорциональна интенсивности падающего на катод излучения.

«Строение ядра атома» - A. 10 -12. Радиоактивное превращение атомных ядер. Следовательно, излучение состоит из потоков положительных частиц, отрицательных и нейтральных. 13 - 15. 1896 г. Анри Беккерель (франц.) открыл явление радиоактивности. Обозначается - , имеет массу? 1а.е.м. и заряд равный заряду электрона. 5. Атом нейтрален, т.к. заряд ядра равен общему заряду электронов.

«Состав атомного ядра» - Массовое число. ЯДЕРНЫЕ СИЛЫ – силы притяжения, связывающие протоны и нейтроны в ядре. Ядерные силы. Общий вид обозначения ядра. Зарядовое число. Зарядовое число равно заряду ядра, выраженному в элементарных электрических зарядах. Зарядовое число равно порядковому номеру химического элемента. Во много раз больше кулоновских сил.

«Синтез плазмы» - Срок строительства 8-10 лет. Спасибо за внимание. Сооружение и инфраструктура ИТЭР. Создание ТОКАМАКА. Проектные параметры ИТЭР. Создание ИТЭР(ITER). 5. Примерная стоимость 5 млрд. евро. Термоядерное оружие. Вклад России в реактор ИТЭР. 2. Преимущество термоядерной энергетики. Требования к энергетике.

До сих пор ученые могли только предполагать наличие молекулярных структур. Сегодня же с помощью атомно-силовой микроскопии, отдельные атомные связи (каждая несколько десятков миллионных долей миллиметра длиной), соединяющие молекулу (26 атомов углерода и 14 атомов водорода), можно увидеть довольно четко.

Первоначально, команда хотела работать со структурами из графена, однослойного материала, в котором атомы углерода расположены в виде шестиугольников. Формируя соты углерода, атомы перестраиваются из линейной цепи в шестигранники; эта реакция может давать несколько различных молекул.

Феликс Фишер, химик Калифорнийского университет в Беркли, и его коллеги хотели визуализировать молекулы, чтобы убедиться, что все сделали правильно.

Кольчатая, углеродсодержащая молекула, показанная до и после реорганизации с двумя наиболее распространенными продуктами реакции, проходившей при температуре выше 90 градусов Цельсия. Размер: 3 ангстрема или трех-десяти миллиардная доля метра в поперечнике.

Чтобы задокументировать рецепт графена, Фишеру было необходимо мощное устройство обработки изображений, и он обратился к атомно-силовому микроскопу, который был у Майкла Кромми из лаборатории Калифорнийского университета.

Бесконтактная атомно-силовая микроскопия (NC-AFM) использует очень тонкий и чувствительный датчик, чтобы почувствовать электрическую силу, создаваемую молекулами. Кончик перемещается вблизи поверхности молекулы, испытывая отклонения разными зарядами, создавая образ того, как перемещаются атомы.

Одноатомный кончик бесконтактного атомно-силового микроскопа "прощупывает" поверхность с помощью острой иглы. Игла движется по поверхности исследуемого объекта подобно тому, как игла фонографа проходит по желобкам пластинки. Кроме атомов, возможно "прощупывать" и атомные связи


Так команде удалось не только визуализировать атомы углерода, но и связи между ними, созданные общими электронами. Они поместили кольчатые структуры углерода на серебренную пластину и нагрели ее, чтобы реорганизовать молекулу. Охлажденные продукты реакции, содержали три неожиданных продукта и только одну молекулу, ожидаемую учеными.

Атом водорода, запечатлев электронные облака. И хотя современные физики с помощью ускорителей могут определять даже форму протона, атом водорода, по-видимому, так и останется самым мелким объектом, изображение которого имеет смысл называть фотографией. «Лента.ру» представляет обзор современных методов фотографирования микромира.

Строго говоря, обычной фотографии в наши дни почти не осталось. Изображения, которые мы по привычке называем фотографиями и можем найти, к примеру, в любом фоторепортаже «Ленты.ру», вообще-то, являются компьютерными моделями. Светочувствительная матрица в специальном приборе (по традиции его продолжают называть «фотоаппаратом») определяет пространственное распределение интенсивности света в нескольких разных спектральных диапазонах, управляющая электроника сохраняет эти данные в цифровом виде, а потом другая электронная схема на основе этих данных отдает команду транзисторам в жидкокристаллическом дисплее. Пленка, бумага, специальные растворы для их обработки - все это стало экзотикой. А если мы вспомним буквальное значение слова, то фотография - это «светопись». Так что говорить о том, что ученым удалось сфотографировать атом, можно лишь с изрядной долей условности.

Больше половины всех астрономических снимков уже давно делают инфракрасные, ультрафиолетовые и рентгеновские телескопы. Электронные микроскопы облучают не светом, а пучком электронов, а атомно-силовые и вовсе сканируют рельеф образца иглой. Есть рентгеновские микроскопы и магнитно-резонансные томографы. Все эти приборы выдают нам точные изображения различных объектов, и несмотря на то что о «светописи» говорить здесь, разумеется, не приходится, мы все же позволим себе именовать такие изображения фотографиями.

Эксперименты физиков по определению формы протона или распределения кварков внутри частиц останутся за кадром; наш рассказ будет ограничен масштабами атомов.

Оптика не стареет

Как выяснилось во второй половине XX века, оптическим микроскопам еще есть куда развиваться. Решающим моментом в биологических и медицинских исследованиях стало появление флуоресцентных красителей и методов, позволяющих избирательно помечать определенные вещества. Это не было «всего лишь новой краской», это был настоящий переворот.

Вопреки расхожему заблуждению, флуоресценция - это вовсе не свечение в темноте (последнее называется люминесценцией). Это явление поглощения квантов определенной энергии (скажем, синего света) с последующим излучением других квантов меньшей энергии и, соответственно, иного света (при поглощении синего испускаться будут зеленые). Если поставить светофильтр, который пропускает только излучаемые красителем кванты и задерживает свет, вызывающий флуоресценцию, можно увидеть темный фон с яркими пятнами красителей, а красители, в свою очередь, могут расцвечивать образец чрезвычайно избирательно.

Например, можно покрасить цитоскелет нервной клетки красным, синапсы выделить зеленым, а ядро - голубым. Можно сделать флуоресцентную метку, которая позволит обнаружить белковые рецепторы на мембране или синтезируемые клеткой в определенных условиях молекулы. Метод иммуногистохимического окрашивания совершил революцию в биологической науке. А когда генные инженеры научились делать трансгенных животных с флуоресцентными белками, этот метод пережил второе рождение: реальностью стали, например, мыши с окрашенными в разные цвета нейронами.

Кроме того, инженеры придумали (и отработали на практике) метод так называемой конфокальной микроскопии. Суть его заключается в том, что микроскоп фокусируется на очень тонкий слой, а специальная диафрагма отсекает создаваемую объектами вне этого слоя засветку. Такой микроскоп может последовательно сканировать образец сверху вниз и получать стопку снимков, которая является готовой основой для трехмерной модели.

Использование лазеров и сложных оптических систем управления лучом позволило решить проблему выгорания красителей и высыхания нежных биологических образцов под ярким светом: луч лазера сканирует образец только тогда, когда это необходимо для съемки. А чтобы не тратить время и силы на осмотр большого препарата через окуляр с узким полем зрения, инженеры предложили автоматическую систему сканирования: на предметный столик современного микроскопа можно положить стекло с образцом, и прибор самостоятельно отснимет масштабную панораму всего образца. При этом в нужных местах он будет наводить на резкость, а затем склеит множество кадров воедино.

В некоторые микроскопы можно посадить живых мышей, крыс или хотя бы мелких беспозвоночных животных. Другие дают небольшое увеличение, зато совмещены с рентгеновским аппаратом. Многие для устранения помех от вибраций монтируются на специальных столах массой в несколько тонн внутри помещений с тщательно контролируемым микроклиматом. Стоимость подобных систем превышает стоимость иных электронных микроскопов, а конкурсы на самый красивый кадр давно стали традицией. Кроме того, продолжается и совершенствование оптики: от поиска лучших сортов стекла и подбора оптимальных комбинаций линз инженеры перешли к способам фокусировки света.

Мы специально перечислили ряд технических подробностей для того, чтобы показать: прогресс в области биологических исследований давно связан с прогрессом в других областях. Если бы не существовало компьютеров, способных автоматически сосчитать число окрашенных клеток на нескольких сотнях фотографий, толку от супермикроскопов было бы немного. А без флуоресцентных красителей все миллионы клеток были бы неотличимы друг от друга, так что проследить за формированием новых или гибелью старых было бы практически невозможно.

По сути, первый микроскоп представлял собой струбцину с закрепленной на ней сферической линзой. Аналогом такого микроскопа может быть простая игральная карта с проделанным в ней отверстием и каплей воды. По некоторым данным подобные устройства применяли золотодобытчики на Колыме уже в прошлом столетии.

За дифракционным пределом

У оптических микроскопов есть принципиальный недостаток. Дело в том, что по форме световых волн невозможно восстановить форму тех предметов, которые оказались намного меньше длины волны: с тем же успехом можно пытаться исследовать тонкую текстуру материала рукой в толстой перчатке для сварочных работ.

Ограничения, создаваемые дифракцией, отчасти удалось преодолеть, причем без нарушения законов физики. Поднырнуть под дифракционный барьер оптическим микроскопам помогают два обстоятельства: то, что при флуоресценции кванты излучаются отдельными молекулами красителя (которые могут довольно далеко отстоять друг от друга), и то, что за счет наложения световых волн можно получить яркое пятно с диаметром, меньшим, чем длина волны.

При наложении друг на друга световые волны способны взаимно друг друга погасить, поэтому параметры освещения образца так, чтобы в яркую область попадал по возможности меньший участок. В сочетании с математическими алгоритмами, которые позволяют, например, убрать двоение изображения, такое направленное освещение дает резкое повышение качества съемки. Становится возможным, к примеру, исследовать в оптический микроскоп внутриклеточные структуры и даже (комбинируя описанный метод с конфокальной микроскопией) получать их трехмерные изображения.

Электронный микроскоп до электронных приборов

Для того чтобы открыть атомы и молекулы, ученым не пришлось их рассматривать - молекулярная теория не нуждалась в том, чтобы видеть объект. А вот микробиология стала возможна только после изобретения микроскопа. Поэтому первое время микроскопы ассоциировались именно с медициной и биологией: физики и химики, изучавшие существенно меньшие объекты, обходились другими средствами. Когда же и им захотелось посмотреть на микромир, дифракционные ограничения стали серьезной проблемой, тем более что описанные выше методы флуоресцентной микроскопии были еще неизвестны. Да и толку от повышения разрешающей способности с 500 до 100 нанометров немного, если объект, который надо рассмотреть, еще меньше!

Зная о том, что электроны могут себя вести и как волна, и как частица, физики из Германии в 1926 году создали электронную линзу. Идея, лежащая в ее основе, была очень простой и понятной любому школьнику: раз электромагнитное поле отклоняет электроны, то с его помощью можно поменять форму пучка этих частиц, растащив их в разные стороны, или, напротив, уменьшить диаметр пучка. Спустя пять лет, в 1931 году Эрнст Руска и Макс Кнолл построили первый в мире электронный микроскоп. В приборе образец сначала просвечивался пучком электронов, а потом электронная линза расширяла прошедший насквозь пучок перед тем, как тот падал на специальный люминесцентный экран. Первый микроскоп давал увеличение всего в 400 раз, но замена света на электроны открыла дорогу к фотографированию с увеличением в сотни тысяч раз: конструкторам пришлось всего лишь преодолеть несколько препятствий технического характера.

Электронный микроскоп позволил рассмотреть устройство клеток в недосягаемом ранее качестве. Но по этому снимку нельзя понять возраст клеток и наличие в них тех или иных белков, а эта информация очень нужна ученым.

Сейчас электронные микроскопы позволяют фотографировать вирусы крупным планом. Существуют разные модификации приборов, позволяющие не только просвечивать тонкие срезы, но и рассматривать их в «отраженном свете» (в отраженных электронах, конечно). Мы не будем подробно рассказывать про все варианты микроскопов, но заметим, что недавно исследователи - они научились восстанавливать изображение по дифракционной картине.

Потрогать, а не рассмотреть

Еще одна революция произошла за счет дальнейшего отхода от принципа «осветить и посмотреть». Атомный силовой микроскоп, равно как и сканирующий туннельный микроскоп, уже ничем на поверхность образцов не светит. Вместо этого по поверхности перемещается особо тонкая игла, которая буквально подпрыгивает даже на неровностях размером с отдельный атом.

Не вдаваясь в детали всех подобных методов, заметим главное: иглу туннельного микроскопа можно не только перемещать вдоль поверхности, но и использовать для перестановки атомов с места на место. Именно таким образом ученые создают надписи, рисунки и даже мультфильмы, в которых нарисованный мальчик играет с атомом. Настоящим атомом ксенона, перетаскиваемым иглой сканирующего туннельного микроскопа.

Туннельным микроскоп называют потому, что он использует эффект протекающего через иглу туннельного тока: электроны проходят через зазор между иглой и поверхностью за счет предсказанного квантовой механикой туннельного эффекта. Для работы такого прибора нужен вакуум.

Намного менее требователен к окружающим условиям атомный силовой микроскоп (АСМ) - он может (с рядом ограничений) работать без откачки воздуха. В определенном смысле АСМ является нанотехнологичным наследником патефона. Игла, закрепленная на тонком и гибком кронштейне-кантилевере (cantilever и есть «кронштейн»), движется вдоль поверхности без подачи на нее напряжения и следует рельефу образца так же, как игла патефона следует вдоль бороздок грампластинки. Изгиб кантилевера заставляет отклоняться закрепленное на нем зеркало, зеркало отклоняет лазерный луч, и это позволяет очень точно определять форму исследуемого образца. Главное только иметь достаточно точную систему перемещения иглы, а также запас игл, которые должны быть идеально острыми. Радиус закругления у кончиков таких игл может не превышать одного нанометра.

АСМ позволяет видеть отдельные атомы и молекулы, однако, как и туннельный микроскоп, не позволяет заглянуть под поверхность образца. Иными словами, ученым приходится выбирать между возможностью видеть атомы и возможностью изучать весь объект целиком. Впрочем, и для оптических микроскопов внутренности изучаемых образцов не всегда доступны, ведь минералы или металлы обычно свет пропускают плохо. Кроме того, с фотографированием атомов все равно возникают сложности - эти объекты предстают простыми шариками, форма электронных облаков на таких снимках не видна.

Синхротронное излучение, возникающее при торможении разогнанных ускорителями заряженных частиц, позволяет изучать окаменевшие останки доисторических животных. Вращая образец под рентгеновскими лучами, мы можем получать трехмерные томограммы - именно так был найден, например, мозг внутри черепа рыб, вымерших 300 миллионов лет назад. Можно обойтись и без вращения, если регистрацию прошедшего излучения фиксацией рассеянных за счет дифракции рентгеновских лучей.

И это еще не все возможности, которые открывает рентгеновское излучение. При облучении им многие материалы флуоресцируют, причем по характеру флуоресценции можно определить химический состав вещества: таким способом ученые окраску древних артефактов, стертые в Средние века труды Архимеда или окраску перьев давно вымерших птиц.

Позируют атомы

На фоне всех тех возможностей, которые предоставляют рентгеновские или оптико-флуоресцентные методы, новый способ фотографирования отдельных атомов уже кажется не таким уж большим прорывом в науке. Суть метода, который позволил получить представленные на этой неделе изображения, такова: с ионизированных атомов срывают электроны и направляют их на специальный детектор. Каждый акт ионизации срывает электрон с определенного положения и дает одну точку на «фотографии». Накопив несколько тысяч таких точек, ученые сформировали картинку, отображающую наиболее вероятные места обнаружения электрона вокруг ядра атома, а это по определению и есть электронное облако.

В заключение скажем, что возможность видеть отдельные атомы с их электронными облаками - это скорее вишенка на торте современной микроскопии. Ученым было важно исследовать структуру материалов, изучать клетки и кристаллы, а обусловленное этим развитие технологий дало возможность дойти до атома водорода. Все, что меньше, - уже сфера интересов специалистов по физике элементарных частиц. А биологам, материаловедам и геологам еще есть куда совершенствовать микроскопы даже с довольно скромным на фоне атомов увеличением. Специалистам по нейрофизиологии, к примеру, давно хочется иметь прибор, способный видеть отдельные клетки внутри живого мозга, а создатели марсоходов продали бы душу за электронный микроскоп, который влезал бы на борт космического аппарата и мог бы работать на Марсе.

Предлагаем оценить снимки финалистов, претендующих на звание« Фотограф года» Королевского фотографического общества. Победителя объявят уже 7 октября, а выставка лучших работ пройдет с 7 октября по 5 января в Музее науки в Лондоне.

Редакция ПМ

«Структура мыльного пузыря», автор Ким Кокс

Мыльные пузыри оптимизируют пространство внутри себя и минимизируют площадь их поверхности для заданного объема воздуха. Это делает их полезным объектом исследования во многих областях, в частности, в области материаловедения. Стенки пузырьков как бы стекают под действием силы тяжести: они тонкие вверху и толстые внизу.


«Разметка на молекулах кислорода», Ясмин Кроуфорд

Снимок входит в последний крупный проект автора в рамках магистерской работе по фотографии в университете Фалмута, где основное внимание уделялось исследованию миалгического энцефаломиелита. Кроуфорд говорит, что создает образы, которые связывают нас с неоднозначным и неизвестным.


«Спокойствие вечности», автор Евгений Самученко

Снимок сделан в Гималаях на озере Госаикунда на высоте 4400 метров. Млечный Путь — это галактика, в которую входит и наша Солнечная система: смутная полоса света на ночном небе.


«Смущенный мучной жук», автор Дэвид Спирс

Этот маленький жук-вредитель заводится зерновых и мучных изделиях. Изображение было получено с помощью сканирующей электронной микрофотографии, а затем окрашено в Photoshop.


«Туманность «Северная Америка», Дэйв Уотсон

Туманность «Северная Америка» NGC7000 — это эмиссионная туманность в созвездии Лебедя. Форма туманности напоминает форму Северной Америки — можно увидеть даже Мексиканский залив.


«Жук-олень», автор Виктор Сикора

Фотограф использовал световую микроскопию с увеличением в пять раз.


«Телескоп Ловелла», автор Мардж Брэдшоу

«Я была очарована телескопом Ловелла в Джодрелл Бэнк с тех пор, как увидела ее на школьной экскурсии», — говорит Брэдшоу. Она хотела сделать несколько более детальных фотографий, чтобы показать его износ.


«Медузы вверх ногами», автор Мэри Энн Чилтон

Вместо того, чтобы плавать, этот вид проводит время, пульсируя в воде. Цвет медуз — результат поедания водорослей.