Максимальное значение числа пи. Число пи - значение, история, кто придумал

В числе ПИ очень много загадок. Вернее это даже не загадки, а своего рода какая-то Истина, которую за всю историю человечества никто еще не разгадал…

Что такое число Пи? Число ПИ - математическая «константа», выражающая отношение длины окружности к её диаметру. Сначала по невежеству его (это отношение) считали равным трем, что было грубо приближенно, но им хватало. Но когда времена доисторические сменились временами древними (т.е. уже историческими), то удивлению пытливых умов не было предела: оказалось, что число три весьма неточно выражает это соотношение. С течением времени и развитием наук это число стали полагать равным двадцати двум седьмым.

Английский математик Август де Морган назвал как-то число ПИ “…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу”. Неутомимые ученые продолжали и продолжали вычислять десятичные знаки числа Пи, что является на самом деле дико нетривиальной задачей, потому что просто так в столбик его не вычислить: число это не только иррациональное, но и трансцендентное (это вот как раз такие числа, которые не вычисляются путем простых уравнений).

В процессе вычислений этих самых знаков было открыто множество разных научных методов и целых наук. Но самое главное – в десятичной части числа пи нет повторений, как в обычной периодической дроби, а число знаков после запятой у него – бесконечно. На сегодняшний день проверено, что в 500 млрд. знаков числа пи повторений действительно нет. Есть основания полагать, что их нет вообще.

Поскольку в последовательности знаков числа пи нет повторений – это значит, что последовательность знаков числа пи подчиняется теории хаоса, точнее, число пи – это и есть хаос, записанный цифрами. Более того, при желании, можно этот хаос представить графически, и есть предположение, что этот Хаос разумен.

В 1965-м году американский математик М. Улэм, сидя на одном скучном собрании, от нечего делать начал писать на клетчатой бумаге цифры, входящие в число пи. Поставив в центре 3 и двигаясь по спирали против часовой стрелки, он выписывал 1, 4, 1, 5, 9, 2, 6, 5 и прочие цифры после запятой. Попутно он обводил все простые числа кружками. Каково же было его удивление и ужас, когда кружки стали выстраиваться вдоль прямых!

В десятичном хвосте числа пи можно отыскать любую задуманную последовательность цифр. Любая последовательность цифр в десятичных знаках числа пи рано или поздно найдется. Любая!

Ну и что? – спросите вы. А то. Прикиньте: если там есть ваш телефон (а он есть), то ведь там же есть и телефон той девушки, которая не захотела дать вам свой номер. Более того, там есть и номера кредиток, и даже все значения выигрышных номеров завтрашнего тиража лотереи. Да что там, вообще всех лотерей на много тысячелетий вперед. Вопрос в том, как их там отыскать…

Если зашифровать все буквы цифрами, то в десятичном разложении числа пи можно найти всю мировую литературу и науку, и рецепт изготовления соуса бешамель, и все священные книги всех религий. Это строгий научный факт. Ведь последовательность БЕСКОНЕЧНА и сочетания в числе ПИ не повторяются, следовательно она содержит ВСЕ сочетания цифр, и это уже доказано. А раз все, то ВСЕ. В том числе и такие, которые соответствуют выбранной вами книге.

А это опять-таки означает, что там содержится не только вся мировая литература, которая уже написана (в частности и те книги, которые сгорели и т.д.), но и все книги, которые еще БУДУТ написаны. В том числе и Ваши статьи на сайтах. Получается, что это число (единственное разумное число во Вселенной!) и управляет нашим миром. Надо только рассмотреть побольше знаков, найти нужный участок и расшифровать его. Это чем-то сродни парадоксу со стадом шимпанзе, долбящем по клавиатуре. При достаточно долгом (можно даже оценить это время) эксперименте они напечатают все пьесы Шекспира.

Тут же напрашивается аналогия с периодически появляющимися сообщениями о том, что в Ветхом Завете, якобы, закодированы послания потомкам, поддающиеся прочтению с помощью хитроумных программ. Отметать сходу такую экзотическую особенность Библии не совсем мудро, кабаллисты веками занимаются поиском таких пророчеств, но хотелось бы привести сообщение одного исследователя, который с помощью компьютера нашел в Ветхом завете слова о том, что в Ветхом Завете нет никаких пророчеств. Скорее всего, в очень большом тексте, так же, как и в бесконечных цифрах числа ПИ, можно не только закодировать любую информацию, но и “найти” фразы, изначально не заложенные туда.

Для практики, в пределах Земли достаточно 11 знаков после точки. Тогда, зная, что радиус Земли равен 6400 км или 6,4*1012 миллиметров, получится, что мы, отбросив двенадцатую цифру в числе ПИ после точки при вычислении длины меридиана, ошибемся на несколько миллиметров. А при расчете длины Земной орбиты при вращении вокруг Солнца (как известно, R=150*106 км = 1,5*1014 мм) для такой же точности достаточно использовать число ПИ с четырнадцатью знаками после точки, да что уж там мелочиться - диаметр нашей Галактики около 100.000 световых лет (1 световой год примерно равен 1013 км) или 1018 км или 1030 мм., а еще в XVII веке были получены 34 знака числа ПИ, избыточные для таких расстояний, а их на данный момент вычислено до 12411-триллионного знака !!!

Отсутствие периодически повторяющихся цифр, а именно, исходя их формулы Длина окружности=Пи*D окружность не замыкается, так как нет конечного числа. Этот факт также может тесно быть связан с спиральным проявлением в нашей жизни …

Есть еще гипотеза о том, что все (или некоторые) универсальные постоянные (постоянная Планка, число Эйлера, универсальная гравитационная постоянная, заряд электрона и т.д.) со временем меняют свои значения, так как меняется кривизна пространства из-за перераспределения материи или по другим, не известным нам причинам.

Рискуя навлечь гнев просвещенного сообщества, можем предположить, что и рассматриваемое сегодня число ПИ, отражающее свойства Вселенной, может со временем меняться. Во всяком случае, никто не может нам запретить заново найти значение числа ПИ, подтвердив (или не подтвердив) имеющиеся значения.

10 интересных фактов про число ПИ

1. История числа насчитывает не одно тысячелетие, почти столько, сколько существует наука математика. Конечно, точное значение числа рассчитали не сразу. Поначалу отношение длины окружности к диаметру считали равным 3. Но с течением времени, когда начала развиваться архитектура, потребовалось более точное измерение. Кстати, число существовало, а вот буквенное обозначение оно получило только в начале XVIII века (1706 год) и происходит от начальных букв двух греческих слов, означающих «окружность» и «периметр». Буквой «π» число наделил математик Джонс, а прочно вошла в математику она уже в 1737 году.

2. В разные эпохи и у разных народов число Пи имело разное значение. Например, в Древнем Египте оно равнялось 3,1604, у индусов оно приобрело значение 3,162, китайцы пользовались числом, равным 3,1459. С течением времени π рассчитывали все точнее, а когда появилась вычислительная техника, то есть компьютер, оно стало насчитывать более 4 миллиардов знаков.

3. Есть легенда, точнее так считают специалисты, что число Пи использовали при строительстве Вавилонской башни. Однако не гнев божий стал причиной ее обрушения, а неправильные расчеты при строительстве. Мол, древние мастера ошиблись. Подобная версия существует касательно храма Соломона.

4. Примечательно, что значение числа Пи пытались вводить даже на уровне государства, то есть посредством закона. В 1897 году в штате Индиана подготовили билль. Согласно документу Пи равнялось 3,2. Однако ученые вовремя вмешались и предотвратили таким образом ошибку. В частности, против билля выступил профессор Пердью, присутствовавший на законодательном собрании.

5. Интересно, что свое имя имеют несколько чисел в бесконечной последовательности Пи. Так, шесть девяток числа Пи носят имя американского физика. Как-то Ричард Фейнман читал лекцию и ошарашил публику замечанием. Он сказал, что хотел бы наизусть выучить цифры числа Пи до шести девяток только для того, чтобы под конец рассказа произнести шесть раз «девять», намекая на то, что его значение рационально. Тогда как на самом деле оно иррационально.

6. Математики всего мира не прекращают вести исследования, связанные с числом Пи. Оно буквально окутано некой тайной. Некоторые теоретики даже полагают, что в нем заключена вселенская истина. Чтобы обмениваться знаниями и новой информацией о Пи, организовали Пи-клуб. Вступить в него непросто, нужно иметь незаурядную память. Так, желающих стать членом клуба экзаменуют: человек должен по памяти рассказать как можно больше знаков числа Пи.

7. Придумали даже различные техники для запоминания числа Пи после запятой. Например, придумывают целые тексты. В них слова имеют то же количество букв, что и соответствующая цифра после запятой. Чтобы еще упростить запоминание такого длинного числа, сочиняют стихи по тому же принципу. Члены Пи-клуба частенько развлекаются таким образом, а заодно тренируют память и сообразительность. Например, такое хобби было у Майка Кейта, который восемнадцать лет назад придумал рассказ, каждое слово в котором равнялось почти четырем тысячам (3834) первых знаков числа Пи.

8. Есть даже люди, поставившие рекорды по запоминанию знаков Пи. Так, в Японии Акира Харагучи наизусть выучил больше восьмидесяти трех тысяч знаков. А вот отечественный рекорд не такой выдающийся. Житель Челябинска сумел наизусть произнести только две с половиной тысячи чисел после запятой числа Пи.

9. День числа Пи отмечают больше четверти века, с 1988 года. Однажды физик из научно-популярного музея в Сан-Франциско Ларри Шоу заметил, что 14 марта по написанию совпадает с числом Пи. В дате месяц и число образуют 3.14.

10. Есть любопытное совпадение. 14 марта родился великий ученый Альберт Эйнштейн, создавший, как известно, теорию относительности.

Число Пи (обозначается как π) - математическая величина, являющаяся постоянным значением: отношением длины окружности к ее диаметру. Сейчас этот параметр используется во многих отраслях математики и физики: редко можно встретить формулу, в которой нет π. В чем уникальность этого числа и какова его история появления?

Краткая история вычислений π

Ученые древнего Междуречья заметили, что длина окружности относится к ее диаметру как постоянная величина. Проводя простейшие расчеты, они пришли к выводу, что число π примерно равно 3.

В древнем Египте широко известен документ писца Армеса , который предположил, что площадь круга с радиусом r эквивалентна площади квадрата с длиной ребра 8/9 * 2r (8/9 относительно диаметра окружности).

Так как площадь круга S = πr 2 , получаем:

πr 2 = (8/9*2r) 2 = (16/9) 2 * r 2 = 256/81r 2

По этим расчетам число π получалось равным 3,16.

Максимально точно к современному числовому определению π в древности приблизился Архимед . Он анализировал отношения вписанного и описанного 96-угольника в окружность к ее длине и пришел к неравенству вида:

3 (10/71) < π < 3 (1/7)

Значение π получалось равным 22/7.

До середины 17 столетия ученые продолжали предпринимать попытки нахождения точного определения числа π, постоянно увеличивая количество ребер многоугольников. Математик из Голландии Лудольф ван Цейлен потратил на расчеты 10 лет, в результате чего он получил результат с 20 символами после запятой.

Точное аналитическое выражение числа π первым получил Франсуа Виет . Он установил, что площадь круга с диаметром 1 вычисляется по формуле:

S = "1/2√(1/2) * √(1/2+1/2√(1/2)) * √(1/2+1/2√((1/2)+1/2√(1/2)))…"

Известно, что площадь такого круга равна π/4. Преобразовав выражение, ученый установил:

π/2 = 2/√2*2/√(2+√2) * 2/(√((2)+(√((2)+√(2)))))…

Виет вычислил π с 9 корректными символами после запятой.

Ученый из Англии Джон Мэчин в 1706 году вывел значение числа π со 100 символами после запятой. Он воспользовался формулой Лейбница и переписал ее в виде:

π/4 = 4 arctg(1/5) - arctg(1/239)

С появлением компьютерных вычислений появилась возможность получать точные значения числа π с сотнями символов после запятой. Математик из Индии Сриниваса Рамануджан выполнил разложение арктангенса в ряд Тейлора и получил значение π с 600 цифрами.

В 1987 году благодаря расчетам на компьютере братья Чудновские вывели число π с миллионом символов после запятой. В 2009 году ученые из Японии рассчитали на суперкомпьютере π с 2,5 миллионами знаков. В этом же году программист из Франции Фабрису Беллару получил 2 699 999 990 000 символов после запятой, используя обычный компьютер с системой Linux. Его расчеты длились 131 день.

Последний рекорд принадлежит Сингеру Кондо и Александру Йи . Ученые определили значение π с 12,1 триллионами символов после запятой.

Необычные факты о числе π

Существует легенда, что число π использовали в расчетах при постройке Вавилонской башни и храма Соломона. Но неправильные математические вычисления привели к разрушению зданий.

Значение π хотели узаконить на уровне государства. В штате Индиана в 1897 году был подготовлен билль, согласно которому значение π равнялось 3,2. Благодаря своевременному вмешательству нескольких ученых такую ошибку удалось предотвратить.

Шесть девяток, встречающиеся в бесконечном значении числа π носят имя физика из США Ричарда Фейнмана , который изъявил желание выучить все предшествующие им цифры.

Создан специальный клуб последователей числа π. Чтобы вступить в него, нужно выучить как можно больше символов после запятой. Члены клуба полагают, что в значении π находится истина существования Вселенной и смысл бытия.

Разрабатываются механизмы запоминания числа π. Члены клуба придумали принцип запоминания, основанный на соответствии каждой цифры, входящей в π, слову из такого же количества букв. Участники сообщества сочиняют стихи, придуманные согласно этому принципу. Однажды даже был опубликован целый рассказ, включающий 3834 слова, количество букв в которых равнялось цифрам в π.

Люди соревнуются в запоминании символов в π и ставят рекорды. Японец Акира Харагучи выучил более 83000 знаков после запятой числа π. В России максимальный рекорд составляет 2500 знаков и принадлежит жителю Челябинска.

14 марта отмечается день числа π. Физик Ларри Шоу заметил, что написание этой даты (в американской версии - 3.14) аналогично первым трем цифрами числа π.

Особенно этот праздник любим математиками и иными специалистами точных наук. Они расслабляются и веселятся в этот день, а кондитеры выпекают различные изделия в форме π.

В Сиэттле рядом со зданием Музея искусств установили памятник числу π.

Применение числа π

Величина π сейчас используется в самых различных областях современной науки. Это не только отношение длины окружности к ее диаметру, неевклидова геометрия не обходится без π. Эйлер вывел формулу, описывающую связь между π и e:

С применением числа π можно вычислить любую другую константу, например, постоянную тонкой структуры, постоянную золотой пропорции. Область использования π широка:

  • Геометрия.
  • Ядерная физика.
  • Теория относительности.
  • Физика космоса.
  • Квантовая механика.

Ученые выяснили, что в расшифрованном ДНК человека число π определяет структуру макромолекулы. Это произвело фурор. Руководитель исследования, доктор Чарльз Кэнтор , отметил: «Это феноменально, число π встречается повсюду, и при этом является неизменной величиной».

Формулы с числом π

Существует много формул для вычисления числа π.

Формула Валлиса:

2/1 * 2/3 * 4/3 * 4/5 * 6/5 * 6/7 * 8/7 * 8/9… = π/2

Она активно используется в теоретических расчетах, поскольку такое медленно сходящееся произведение непригодно для практического применения. С помощью формулы Валлиса получают тождество Стирлинга.

Отношение длины окружности к ее диаметру одно и то же для всех окружностей. Это отношение принято обозначать греческой буквой (“пи” - начальная буква греческого слова , которое и означало “окружность”).

Архимед в сочинении “Измерение круга” вычислил отношение длины окружности к диаметру (число ) и нашел, что оно заключено между 3 10/71 и 3 1/7.

Долгое время в качестве приближенного значения использовали число 22/7, хотя уже в V веке в Китае было найдено приближение 355/113 = 3,1415929..., которое было открыто вновь в Европе лишь в XVI веке.

В Древней Индии считали равным = 3,1622….

Французский математик Ф. Виет вычислил в 1579 г. с 9 знаками.

Голландский математик Лудольф Ван Цейлен в 1596 г. публикует результат своего десятилетнего труда – число , вычисленное с 32 знаками.

Но все эти уточнения значения числа производились методами, указанными еще Архимедом: окружность заменялась многоугольником со все большим числом сторон. Периметр вписанного многоугольника при этом был меньше длины окружности, а периметр описанного многоугольника – больше. Но при этом оставалась неясным, является ли число рациональным, т. е. отношением двух целых чисел, или иррациональным.

Лишь в 1767 г. немецкий математик И.Г. Ламберт доказал, что число иррационально.

А еще через сто с лишним лет в 1882 г. другой немецкий математик – Ф. Линдеман доказал его трансцендентность, что означало и невозможность построения при помощи циркуля и линейки квадрата, равновеликого данному кругу.

Простейшее измерение

Начертим на плотном картоне окружность диаметра d (=15 см) , вырежем получившийся круг и обмотаем вокруг него тонкую нить. Измерив длину l (=46,5 см) одного полного оборота нити, разделим l на длину диаметра d окружности. Получившееся частное будет приближенным значением числа , т. е. = l / d = 46,5 см / 15 см = 3,1 . Данный довольно грубый способ дает в обычных условиях приближенное значение числа с точностью до 1.

Измерение с помощью взвешивания

На листе картона начертим квадрат. Впишем в него круг. Вырежем квадрат. Определим массу картонного квадрата с помощью школьных весов. Вырежем из квадрата круг. Взвесим и его. Зная массы квадрата m кв (=10 г) и вписанного в него круга m кр (=7,8 г) воспользуемся формулами

где p и h –соответственно плотность и толщина картона, S – площадь фигуры. Рассмотрим равенства:

Естественно, что в данном случае приближенное значение зависит от точности взвешивания. Если взвешиваемые картонные фигуры будут довольно большими, то возможно даже на обычных весах получить такие значения масс, которые обеспечат приближение числа с точностью до 0,1.

Суммирование площадей прямоугольников, вписанных в полукруг

Рисунок 1

Пусть А (a; 0), В (b; 0). Опишем на АВ полуокружность как на диаметре. Разделим отрезок АВ на n равных частей точками x 1 , x 2 , ..., x n-1 и восстановим из них перпендикуляры до пересечения с полуокружностью. Длина каждого такого перпендикуляра – это значение функции f(x)= . Из рисунка 1 ясно, что площадь S полукруга можно вычислить по формуле

S = (b – a) ((f(x 0) + f(x 1) + … + f(x n-1)) / n.

В нашем случае b=1, a=-1 . Тогда = 2 S .

Значения будут тем точнее, чем больше точек деления будет на отрезке АВ. Облегчить однообразную вычислительную работу поможет компьютер, для которого ниже приводится программа 1, составленная на Бейсике.

Программа 1

REM "Вычисление пи"
REM "Метод прямоугольников"
INPUT "Введите число прямоугольников", n
dx = 1 / n
FOR i = 0 TO n - 1
f = SQR(1 - x ^ 2)
x = x + dx
a = a + f
NEXT i
p = 4 * dx * a
PRINT "Значение пи равно ", p
END

Программа была набрана и запущена при различных значениях параметра n . Полученные значения числа записаны в таблице:

Метод Монте-Карло

Это фактически метод статистических испытаний. Свое экзотическое название он получил от города Монте-Карло в княжестве Монако, знаменитого своими игорными домами. Дело в том, что метод требует применения случайных чисел, а одним из простейших приборов, генерирующих случайные числа, может служить рулетка. Впрочем, можно получить случайные числа и при помощи …дождя.

Для опыта приготовим кусок картона, нарисуем на нем квадрат и впишем в квадрат четверть круга. Если такой чертеж некоторое время подержать под дождем, то на его поверхности останутся следы капель. Подсчитаем число следов внутри квадрата и внутри четверти круга. Очевидно, что их отношение будет приближенно равно отношению площадей этих фигур, так как попадание капель в различные места чертежа равновероятно. Пусть N кр – число капель в круге, N кв – число капель в квадрате, тогда

4 N кр / N кв.

Рисунок 2

Дождь можно заменить таблицей случайных чисел, которая составляется с помощью компьютера по специальной программе. Каждому следу капли поставим в соответствие два случайных числа, характеризующих его положение вдоль осей Ох и Оу . Случайные числа можно выбрать из таблицы в любом порядке, например, подряд. Пусть первое четырехзначное число в таблице 3265 . Из него можно приготовить пару чисел, каждое из которых больше нуля и меньше единицы: х=0,32, у=0,65 . Эти числа будем считать координатами капли, т. е. капля как будто попала в точку (0,32; 0,65). Аналогично поступаем и со всеми выбранными случайными числами. Если окажется, что для точки (х; у) выполняется неравенство, то, значит, она лежит вне круга. Если х + у = 1 , то точка лежит внутри круга.

Для подсчета значения снова воспользуемся формулой (1). Ошибка вычислений по этому методу, как правило, пропорциональна , где D – некоторая постоянная, а N –число испытаний. В нашем случае N = N кв. Из этой формулы видно: для того чтобы уменьшить ошибку в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N, т. е. объем работы, в 100 раз. Ясно, что применение метода Монте-Карло стало возможным только благодаря компьютерам. Программа 2 реализует на компьютере описанный метод.

Программа 2

REM "Вычисление пи"
REM "Метод Монте-Карло "
INPUT "Введите число капель ", n
m = 0
FOR i = 1 TO n
t = INT(RND(1) * 10000)
x = INT(t \ 100)
y = t - x * 100
IF x ^ 2 + y ^ 2 < 10000 THEN m = m + 1
NEXT i
p = 4 * m / n

END

Программа была набрана и запущена при различных значениях параметра n. Полученные значения числа записаны в таблице:

n
n

Метод “падающей иголки”

Возьмем обыкновенную швейную иголку и лист бумаги. На листе проведем несколько параллельных прямых так, чтобы расстояния между ними были равны и превышали длину иголки. Чертеж должен быть достаточно большим, чтобы случайно брошенная игла не упала за его пределами. Введем обозначения: а - расстояние между прямыми, l – длина иглы.

Рисунок 3

Положение случайным образом брошенной на чертеж иглы (см. рис. 3) определяется расстоянием Х от ее середины до ближайшей прямой и углом j , которой игла образует с перпендикуляром, опущенным из середины иглы на ближайшую прямую (см. рис. 4). Ясно, что

Рисунок 4

На рис. 5 изобразим графически функцию y=0,5 cos . Всевозможные расположения иглы характеризуются точками с координатами (; у ) , расположенными на участке ABCD. Закрашенный участок AED – это точки, которые соответствуют случаю пересечения иглы с прямой. Вероятность события a – “игла пересекла прямую” – вычисляется по формуле:

Рисунок 5

Вероятность p(a) можно приблизительно определить многократным бросанием иглы. Пусть иглу бросали на чертеж c раз и p раз она упала, пересекая одну из прямых, тогда при достаточно большом c имеем p(a) = p / c . Отсюда = 2 l с / a k.

Замечание. Изложенный метод представляет собой вариацию метода статистических испытаний. Он интересен с дидактической точки зрения, так как помогает совместить простой опыт с составлением довольно сложной математической модели.

Вычисление с помощью ряда Тейлора

Обратимся к рассмотрению произвольной функции f(х). Предположим, что для нее в точке x 0 существуют производные всех порядков до n -го включительно. Тогда для функции f(х) можно записать ряд Тейлора:

Вычисления с помощью этого ряда будут тем точнее, чем больше членов ряда будет задействовано. Реализовать данный способ, конечно, лучше всего на компьютере, для чего можно воспользоваться программой 3.

Программа 3

REM "Вычисление пи"
REM "Разложение в ряд Тейлора "
INPUT n
a = 1
FOR i = 1 TO n
d = 1 / (i + 2)
f = (-1) ^ i * d
a = a + f
NEXT i
p = 4 * a
PRINT "значение пи равно"; p
END

Программа была набрана и запущена при различных значениях параметра n . Полученные значения числа записаны в таблице:

Есть очень простые мнемонические правила для запоминания значения числа :

Уже много веков и даже, как ни странно, тысячелетий люди понимают важность и ценность для науки математической постоянной, равной отношению длины окружности к ее же диаметру. число Пи, до сих пор неизвестно, но к нему имели отношение самые лучшие математики на протяжении всей нашей истории. Большинство из них хотели выразить его рациональным числом.

1. Исследователи и истинные поклонники числа Пи организовали клуб, для вступления в который требуется знать наизусть достаточно большое количество его знаков.

2. С 1988 года празднуется «День числа Пи», который приходится на 14 марта. Готовят салаты, торты, печенья, пирожные с его изображением.

3. Число Пи уже переложили на музыку, при этом оно весьма неплохо звучит. Ему даже воздвигли памятник в американском Сиэтле перед зданием городского Музея искусств.

В то далекое время число Пи старались вычислить при помощи геометрии. То, что это число постоянно для самых разных окружностей, знали еще геометры в Древнем Египте, Вавилоне, Индии и Древней Греции, утверждавшие в своих работах, что оно всего лишь немного больше трех.

В одной из священных книг джайнизма (древняя индийская религия, которая возникла в VI в. до н. э.) упоминается, что тогда число Пи считалось равным корню квадратному из десяти, что в итоге дает 3,162... .

Древнегреческие математики проводили измерение окружности методом построения отрезка, а вот для того, чтобы измерить круг, им приходилось строить равновеликий квадрат, то есть фигуру, равную ему по площади.

Когда еще не знали десятичных дробей, великий Архимед нашел значение числа Пи с точностью 99,9%. Он открыл способ, который стал основой многих последующих вычислений, вписывал в окружность и описывал вокруг нее правильные многоугольники. В результате Архимед рассчитал значение числа Пи как отношение 22 / 7 ≈ 3,142857142857143.

В Китае, математик и придворный астроном, Цзу Чунчжи в V веке до н. э. обозначил более точное значение числа Пи, рассчитав его до семи цифр после запятой и определил его значение между числами 3, 1415926 и 3,1415927. Более 900 лет понадобилось ученым, чтобы продолжить дальше этот цифровой ряд.

Средние века

Известный индийский ученый Мадхава, который жил на рубеже XIV - XV веков, ставший основателем Керальской школы астрономии и математики, впервые в истории стал работать над разложением тригонометрических функций в ряды. Правда, сохранились всего лишь два его труда, а на другие известны лишь ссылки и цитаты его учеников. В научном трактате «Махаджьянаяна», который приписывают Мадхаве, указано, что число Пи равно 3,14159265359. А в трактате «Садратнамала» приведено число с еще большим количеством точных знаков после запятой: 3,14159265358979324. В указанных числах последние цифры не соответствуют правильному значению.

В XV веке самаркандский математик и астроном Ал-Каши вычислил число Пи с шестнадцатью знаками после запятой. Его результат считался наиболее точным в течение последующих 250 лет.

У. Джонсон, математик из Англии, одним из первых смог обозначить отношение длины окружности к ее диаметру буквой π. Пи - это первая буква греческого слова «περιφέρεια» - окружность. Но этому обозначению удалось стать общепринятым лишь после того, как им воспользовался в 1736 году более известный ученый Л. Эйлер.

Заключение

Современные ученые продолжают работать над дальнейшими вычислениями значений числа Пи. Для этого уже используют суперкомпьютеры. В 2011 г. ученый из Сигэру Кондо, сотрудничая с американским студентом Александром Йи, произвели правильный расчет последовательности из 10 триллионов цифр. Но до сих пор так и неясно, кто открыл число Пи, кто впервые задумался над этой проблемой и произвел первые расчеты этого, по-настоящему мистического числа.

Пи («π») представляет из себя математическую константу, полученную довольно интересным путем. Допустим, что диаметр окружность равен 1 условной единице. Тогда число π - это длина данной окружности, которая приблизительно равна 3,14 условных единиц. Говоря другими словами, число «пи» выражает соотношение между длиной окружности и ее диаметром. Это соотношение будет всегда .

Пи обладает рядом свойств.

Во-первых, число π иррационально, это означает, что его нельзя представить в виде правильной дроби. Значение 3,14 является достаточно приблизительным, доподлинно не известно, же знаков после запятой у этой константы.

Во-вторых, число π - трансцендентное. Это означает, что оно никогда не может быть степенью -либо корня из другого числа. Говоря иначе, число π не является алгебраическим. Более того, если какое-либо число возвести в степень π, то опять же получится трансцендентное число.

Стоит отметить, что древние математики Египта, Греции, Рима, Сирии и Ирана уже знали, что соотношение между диаметром окружности и ее длиной является постоянной величиной. К примеру, в Вавилоне это соотношение оценивалось как 25/8, а в Египте как 256/81. Но наибольших успехов в вычислении значения числа π добился Архимед, который путем многократного описывания и вписывания в нее правильных добился довольно точных результатов. Периметр Архимед принял за минимальное значение числа π, а - за максимальное. Таким образом, Архимед вывел значение константы π, равное 3.142857142857143.

Забавно отметить, что существует «День числа π», который празднуется 14 . Это происходит потому, что если записать числами день и дату , то получится 3.14 - приблизительное значение данной константы. По другой версии, этот праздник надо отмечать 22 июля, так как 22/7 тоже является одним из первых соотношений, приблизительно равным 3.14

Число пи является математической константой, которая представляет собой отношение длины окружности к длине ее диаметра. Это число в математике принято обозначать греческой буквой π.

До сих пор не известно окончательное значение числа пи. В процессе его вычисления было открыто множество научных методов счета. Сейчас ученым известно более 500 миллиардов знаков после запятой, отделяющей десятичную дробь от целого числа. В десятичной части константы пи отсутствуют повторения, как в простой периодической дроби, и число знаков после запятой, скорее всего, бесконечно. Бесконечность этой константы и отсутствие периодически повторяющихся цифр после запятой не позволяют окружности сомкнуться, если, действуя в обратном порядке, умножить число пи на диаметр окружности.

Математики называют число пи записанным цифрами хаосом. В десятичной дроби этой константы можно найти любую задуманную последовательность цифр: любой телефонный номер, пин-код кредитной карты или историческую дату. Более того, если все книги перевести на язык десятичного цифрового кода, их также можно будет найти в числе пи. Там же находятся и еще ненаписанные книги. Поскольку число пи бесконечно, и последовательность цифр после запятой не повторяется, в нем потенциально можно найти абсолютно любую информацию о Вселенной. Этот факт позволяет назвать константу пи «божественной» и «разумной».

В школьной обычно используют минимально точное значение пи с двумя знаками после запятой – 3,14. Для практики на Земле достаточно числа пи с 11 знаками после запятой. Для расчета длины орбиты нашей планеты необходимо использовать число с 14 знаками после запятой. Точные вычисления в пределах нашей галактики возможны с применением числа пи с 34 знаками после запятой.

Нерешенные проблемы числа пи

Неизвестно является ли число пи алгебраически независимым. Также не вычислена точная мера иррациональности этой константы, хотя известно, что она не может быть больше 7,6063. Неизвестно является ли пи в степени n целым числом, если n представляет собой какое-либо положительное число.

Нет подтверждения тому, принадлежит ли пи к кольцу периодов. Кроме того, остается нерешенным вопрос о этого числа. Нормальным называют любое число, при записи которого в n-ричной системе исчисления образуются группы последовательных цифр, встречающиеся с одной и той же асимптотической частотой. Неизвестно даже, какие цифры от 0 до 9 встречаются бесконечное количество раз в десятичном представлении числа пи.