Доступно ученикам о теории относительности эйнштейна. Теория относительности эйнштейна оказалась ошибочной

Новый ум короля [О компьютерах, мышлении и законах физики] Пенроуз Роджер

Общая теория относительности Эйнштейна

Напомним великую истину, открытую Галилеем: все тела под действием силы тяжести падают одинаково быстро. (Это было блестящей догадкой, едва ли подсказанной эмпирическими данными, поскольку из-за сопротивления воздуха перья и камни все же падают не одновременно ! Галилей внезапно понял, что, если бы сопротивление воздуха можно было свести к нулю, то перья и камни падали бы на Землю одновременно.) Потребовалось три столетия, прежде чем глубокое значение этого открытия было по достоинству осознано и стало краеугольным камнем великой теории. Я имею в виду общую теорию относительности Эйнштейна - поразительное описание гравитации, для которого, как нам вскоре станет ясно, потребовалось введение понятия искривленного пространства-времени !

Какое отношение имеет интуитивное открытие Галилея к идее «кривизны пространства-времени»? Каким образом могло получиться, что эта концепция, столь явно отличная от схемы Ньютона, согласно которой частицы ускоряются под действием обычных гравитационных сил, оказалась способной не только сравняться в точности описания с ньютоновской теорией, но и превзойти последнюю? И потом, насколько верным будет утверждение, что в открытии Галилея было нечто такое, что не было позднее включено в ньютоновскую теорию?

Позвольте мне начать с последнего вопроса потому, что ответить на него проще всего. Что, согласно теории Ньютона, управляет ускорением тела под действием гравитации? Во-первых, на тело действует гравитационная сила , которая, как гласит открытый Ньютоном закон всемирного тяготения, должна быть пропорциональна массе тела . Во-вторых, величина ускорения, испытываемая телом под действием заданной силы, по второму закону Ньютона, обратно пропорциональна массе тела . Удивительное открытие Галилея зависит от того факта, что «масса», входящая в открытый Ньютоном закон всемирного тяготения, есть, в действительности, та же «масса», которая входит во второй закон Ньютона. (Вместо «та же» можно было бы сказать «пропорциональна».) В результате ускорение тела под действием гравитации не зависит от его массы. В общей схеме Ньютона нет ничего такого, что указывало бы, что оба понятия массы одинаковы. Эту одинаковость Ньютон лишь постулировал . Действительно, электрические силы аналогичны гравитационным в том, что и те, и другие обратно пропорциональны квадрату расстояния, но электрические силы зависят от электрического заряда , который имеет совершенно другую природу, чем масса во втором законе Ньютона. «Интуитивное открытие Галилея» было бы неприменимо к электрическим силам: о телах (заряженных телах) брошенных в электрическом поле, нельзя сказать, что они «падают» с одинаковой скоростью!

На время просто примем интуитивное открытие Галилея относительно движения под действием гравитации и попытаемся выяснить, к каким следствиям оно приводит. Представим себе Галилея, бросающего с Пизанской наклонной башни два камня. Предположим, что с одним из камней жестко скреплена видеокамера, направленная на другой камень. Тогда на пленке окажется запечатленной следующая ситуация: камень парит в пространстве, как бы не испытывая действия гравитации (рис. 5.23)! И так происходит именно потому, что все тела под действием гравитации падают с одной и той же скоростью.

Рис. 5.23. Галилей бросает два камня (и видеокамеру) с Пизанской башни

В описанной выше картине мы пренебрегаем сопротивлением воздуха. В наше время космические полеты открывают перед нами лучшую возможность проверки этих идей, так как в космическом пространстве нет воздуха. Кроме того, «падение» в космическом пространстве означает просто движение по определенной орбите под действием гравитации. Такое «падение» совсем не обязательно должно происходить по прямой вниз - к центру Земли. В нем вполне может быть и некоторая горизонтальная составляющая. Если эта горизонтальная составляющая достаточно велика, то тело может «падать» по круговой орбите вокруг Земли, не приближаясь к ее поверхности! Путешествие по свободной околоземной орбите под действием гравитации - весьма изощренный (и очень дорогой!) способ «падения». Как в описанной выше видеозаписи, астронавт, совершая «прогулку в открытом космосе», видит свой космический корабль парящим перед собой и как бы не испытывающим действия гравитации со стороны огромного шара Земли под ним! (См. рис. 5.24.) Таким образом, переходя в «ускоренную систему отсчета» свободного падения, можно локально исключить действие гравитации.

Рис. 5.24. Астронавт видит, что его космический корабль парит перед ним, как будто неподверженный действию гравитации

Мы видим, что свободное падение позволяет исключить гравитацию потому, что эффект от действия гравитационного поля такой же, как от ускорения Действительно, если вы находитесь в лифте, который движется с ускорением вверх, то вы просто ощущаете, что кажущееся гравитационное поле увеличивается, а если лифт движется с ускорением вниз, то вам кажется, что гравитационное поле убывает. Если бы трос, на котором подвешена кабина, оборвался, то (если пренебречь сопротивлением воздуха и эффектами трения) результирующее ускорение, направленное вниз (к центру Земли), полностью уничтожило бы действие гравитации, и люди, оказавшиеся в кабине лифта, стали бы свободно плавать в пространстве, подобно астронавту во время выхода в открытый космос, до тех пор, пока кабина не стукнулась бы о Землю! Даже в поезде или на борту самолета ускорения могут быть такими, что ощущения пассажира относительно величины и направления гравитации могут не совпадать с тем, где, как показывает обычный опыт, должны быть «верх» и «низ». Объясняется это тем, что действия ускорения и гравитации схожи настолько, что наши ощущения не способны отличить одни от других. Этот факт - то, что локальные проявления гравитации эквивалентны локальным проявлениям ускоренно движущейся системы отсчета, - и есть то, что Эйнштейн назвал принципом эквивалентности .

Приведенные выше соображения «локальны». Но если разрешается производить (не только локальные) измерения с достаточно высокой точностью, то в принципе можно установить различие между «истинным» гравитационным полем и чистым ускорением. На рис. 5 25 я изобразил в немного преувеличенном виде, как первоначально стационарная сферическая конфигурация частиц, свободно падающая под действием гравитации, начинает деформироваться под влиянием неоднородности (ньютоновского) гравитационного поля.

Рис. 5.25. Приливный эффект. Двойные стрелки указывают относительное ускорение (ВЕЙЛЬ)

Это поле неоднородно в двух отношениях. Во-первых, поскольку центр Земли расположен на некотором конечном расстоянии от падающего тела, частицы, расположенные ближе к поверхности Земли, движутся вниз с бо?льшим ускорением, чем частицы, расположенные выше (напомним закон обратной пропорциональности квадрату расстояния Ньютона). Во-вторых, по той же причине существуют небольшие различия в направлении ускорения для частиц, занимающих различные положения на горизонтали. Из-за этой неоднородности сферическая форма начинает слегка деформироваться, превращаясь в «эллипсоид». Первоначальная сфера удлиняется в направлении к центру Земли (а также в противоположном направлении), так как те ее части, которые ближе к центру Земли, движутся с чуть бо?льшим ускорением, чем те части, которые дальше от центра Земли, и сужается по горизонтали, так как ускорения ее частей, находящихся на концах горизонтального диаметра, слегка скошены «внутрь» - в направлении на центр Земли.

Это деформирующее действие известно как приливный эффект гравитации. Если мы заменим центр Земли Луной, а сферу из материальных частиц - поверхностью Земли, то получим в точности описание действия Луны, вызывающей приливы на Земле, причем «горбы» образуются по направлению к Луне и от Луны. Приливный эффект - общая особенность гравитационных полей, которая не может быть «исключена» с помощью свободного падения. Приливный эффект служит мерой неоднородности ньютоновского гравитационного поля. (Величина приливной деформации в действительности убывает обратно пропорционально кубу, а не квадрату расстояния от центра притяжения.)

Закон всемирного тяготения Ньютона, по которому сила обратно пропорциональна квадрату расстояния, допускает, как оказывается, простую интерпретацию в терминах приливного эффекта: объем эллипсоида, в который первоначально деформируется сфера, равен объему исходной сферы - в предположении, что сфера окружает вакуум. Это свойство сохранения объема характерно для закона обратных квадратов; ни для каких других законов оно не выполняется. Предположим далее, что исходная сфера окружает не вакуум, а некоторое количество материи общей массой М . Тогда возникает дополнительная компонента ускорения, направленная внутрь сферы из-за гравитационного притяжения материи внутри сферы. Объем эллипсоида, в который первоначально деформируется наша сфера из материальных частиц, сокращается - на величину, пропорциональную М . С примером эффекта уменьшения объема эллипсоида мы бы столкнулись, если бы выбрали нашу сферу так, чтобы она окружала Землю на постоянной высоте (рис. 5.26). Тогда обычное ускорение, обусловленное земным притяжением и направленное вниз (т. е. внутрь Земли), будет той самой причиной, по которой происходит сокращение объема нашей сферы.

Рис. 5.26. Когда сфера окружает некое вещество (в данном случае - Землю), возникает результирующее ускорение, направленное внутрь (РИЧЧИ)

В этом свойстве сжимания объема заключена оставшаяся часть закона всемирного тяготения Ньютона, а именно - что сила пропорциональна массе притягивающего тела.

Попробуем получить пространственно-временну?ю картину такой ситуации. На рис. 5.27 я изобразил мировые линии частиц нашей сферической поверхности (представленной на рис. 5.25 в виде окружности), причем я использовал для описания ту систему отсчета, в которой центральная точка сферы кажется покоящейся («свободное падение»).

Рис. 5.27. Кривизна пространства-времени: приливный эффект, изображенный в пространстве-времени

Позиция общей теории относительности состоит в том, чтобы считать свободное падение «естественным движением» - аналогичным «равномерному прямолинейному движению», с которыми имеют дело в отсутствие гравитации. Таким образом, мы пытаемся описывать свободное падение «прямыми» мировыми линиями в пространстве-времени! Но если взглянуть на рис. 5.27, то становится понятно, что использование слова «прямые» применительно к этим мировым линиям способно ввести читателя в заблуждение, поэтому мы будем в терминологических целях называть мировые линии свободно падающих частиц в пространстве-времени - геодезическими .

Но насколько хороша такая терминология? Что обычно понимают под «геодезической» линией? Рассмотрим аналогию для двумерной искривленной поверхности. Геодезическими называются такие кривые, которые на данной поверхности (локально) служат «кратчайшими маршрутами». Иначе говоря, если представить себе отрезок нити, натянутый на указанную поверхность (и не слишком длинный, чтобы он не мог соскользнуть), то нить расположится вдоль некоторой геодезической линии на поверхности.

Рис. 5.28. Геодезические линии в искривленном пространстве: линии сходятся в пространстве с положительной кривизной, и расходятся - в пространстве с отрицательной кривизной

На рис. 5.28 я привел два примера поверхностей: первая (слева) - поверхность так называемой «положительной кривизны» (как поверхность сферы), вторая - поверхность «отрицательной кривизны» (седловидная поверхность). На поверхности положительной кривизны две соседние геодезические линии, выходящие из начальных точек параллельно друг другу, начинают впоследствии изгибаться навстречу друг другу; а на поверхности отрицательной кривизны они изгибаются в стороны друг от друга.

Если мы представим себе, что мировые линии свободно падающих частиц в некотором смысле ведут себя как геодезические линии на поверхности, то окажется, что существует тесная аналогия между гравитационным приливным эффектом, о котором шла речь выше, и эффектами кривизны поверхности - причем как положительной кривизны, так и отрицательной. Взгляните на рис. 5.25, 5.27. Мы видим, что в нашем пространстве-времени геодезические линии начинают расходиться в одном направлении (когда они «выстраиваются» в сторону Земли) - как это происходит на поверхности отрицательной кривизны на рис. 5.28 - и сближаться в других направлениях (когда они смещаются горизонтально относительно Земли) - как на поверхности положительной кривизны на рис. 5.28. Таким образом, создается впечатление, что наше пространство-время, как и вышеупомянутые поверхности, тоже обладает «кривизной», только более сложной, поскольку из-за высокой размерности пространства-времени при различных перемещениях она может носить смешанный характер, не будучи ни чисто положительной, ни чисто отрицательной.

Отсюда следует, что понятие «кривизны» пространства-времени может быть использовано для описания действия гравитационных полей. Возможность использования такого описания в конечном счете следует из интуитивного открытия Галилея (принципа эквивалентности) и позволяет нам исключить гравитационную «силу» с помощью свободного падения. Действительно, ничто из сказанного мной до сих пор не выходит за рамки ньютонианской теории. Нарисованная только что картина дает просто переформулировку этой теории. Но когда мы пытаемся скомбинировать новую картину с тем, что дает предложенное Минковским описание специальной теории относительности - геометрии пространства-времени, которая, как мы знаем, применяется в отсутствие гравитации - в игру вступает новая физика. Результат этой комбинации - общая теория относительности Эйнштейна.

Напомним, чему учил нас Минковский. Мы имеем (в отсутствие гравитации) пространство-время, наделенное особого рода мерой «расстояния» между точками: если мы имеем в пространстве-времени мировую линию, описывающую траекторию какой-нибудь частицы, то «расстояние» в смысле Минковского, измеряемое вдоль этой мировой линии, дает время , реально прожитое частицей. (В действительности, в предыдущем разделе мы рассматривали это «расстояние» только для тех мировых линий, которые состоят из прямолинейных отрезков - но приведенное выше утверждение справедливо и по отношению к искривленным мировым линиям, если «расстояние» измеряется вдоль кривой.) Геометрия Минковского считается точной, если нет гравитационного поля, т. е. если у пространства-времени нет кривизны. Но при наличии гравитации мы рассматриваем геометрию Минковского уже лишь как приближенную - аналогично тому, как плоская поверхность лишь приблизительно соответствует геометрии искривленной поверхности. Вообразим, что, изучая искривленную поверхность, мы берем микроскоп, дающий все большее увеличение - так, что геометрия искривленной поверхности кажется все больше растянутой. При этом поверхность будет нам казаться все более плоской. Поэтому мы говорим, что искривленная поверхность имеет локальное строение евклидовой плоскости. Точно так же мы можем сказать, что при наличии гравитации пространство-время локально описывается геометрией Минковского (которая есть геометрия плоского пространства-времени), но мы допускаем некоторую «искривленность» на более крупных масштабах (рис. 5.29).

Рис. 5.29. Картина искривленного пространства-времени

В частности, как и в пространстве Минковского, любая точка пространства-времени является вершиной светового конуса - но в данном случае эти световые конусы расположены уже не одинаково. В главе 7 мы познакомимся с отдельными моделями пространства-времени, в которых явно видна эта неоднородность расположения световых конусов (см. рис. 7.13, 7.14). Мировые линии материальных частиц всегда направлены внутрь световых конусов, а линии фотонов - вдоль световых конусов. Вдоль любой такой кривой мы можем ввести «расстояние» в смысле Минковского, которое служит мерой времени, прожитого частицами так же, как и в пространстве Минковского. Как и в случае искривленной поверхности, эта мера «расстояния» определяет геометрию поверхности, которая может отличаться от геометрии плоскости.

Геодезическим линиям в пространстве-времени теперь можно придать интерпретацию, аналогичную интерпретации геодезических линий на двумерных поверхностях, учитывая при этом различия между геометриями Минковского и Евклида. Таким образом, наши геодезические линии в пространстве-времени представляют собой не (локально) кратчайшие кривые, а наоборот - кривые, которые (локально) максимизируют «расстояние» (т. е. время) вдоль мировой линии. Мировые линии частиц, свободно перемещающиеся под действием гравитации, согласно этому правилу действительно являются геодезическими. В частности, небесные тела, движущиеся в гравитационном поле, хорошо описываются подобными геодезическими линиями. Кроме того, лучи света (мировые линии фотонов) в пустом пространстве так же служат геодезическими линиями, но на этот раз - нулевой «длины». В качестве примера я схематически нарисовал на рис. 5.30 мировые линии Земли и Солнца. Движение Земли вокруг Солнца описывается «штопорообразной» линией, навивающейся вокруг мировой линии Солнца. Там же я изобразил фотон, приходящий на Землю от далекой звезды. Его мировая линия кажется слегка «изогнутой» вследствие того, что свет (по теории Эйнштейна) на самом деле отклоняется гравитационным полем Солнца.

Рис. 5.30. Мировые линии Земли и Солнца. Световой луч от далекой звезды отклоняется Солнцем

Нам необходимо еще выяснить, каким образом ньютоновский закон обратных квадратов может быть включен (после надлежащей модификации) в общую теорию относительности Эйнштейна. Обратимся еще раз к нашей сфере из материальных частиц, падающей в гравитационном поле. Напомним, что если внутри сферы заключен только вакуум, то, согласно теории Ньютона, объем сферы первоначально не изменяется; но если внутри сферы находится материя общей массой М , то происходит сокращение объема, пропорциональное М . В теории Эйнштейна (для малой сферы) правила в точности такие же, за исключением того, что не все изменение объема определяется массой М ; существует (обычно очень малый) вклад от давления , возникающем в окруженном сферой материале.

Полное математическое выражение для кривизны четырехмерного пространства-времени (которая должна описывать приливные эффекты для частиц, движущихся в любой данной точке по всевозможным направлениям) дается так называемым тензором кривизны Римана . Это несколько сложный объект; для его описания необходимо в каждой точке указать двадцать действительных чисел. Эти двадцать чисел называются его компонентами . Различные компоненты соответствуют различным кривизнам в различных направлениях пространства-времени. Тензор кривизны Римана обычно записывают в виде R tjkl , но так как мне не хочется объяснять здесь, что означают эти субиндексы (и, конечно, что такое тензор), то я запишу его просто как:

РИМАН .

Существует способ, позволяющий разбить этот тензор на две части, называемые, соответственно, тензором ВЕЙЛЯ и тензором РИЧЧИ (каждый - с десятью компонентами). Условно я запишу это разбиение так:

РИМАН = ВЕЙЛЬ + РИЧЧИ .

(Подробная запись тензоров Вейля и Риччи для наших целей сейчас совершенно не нужна.) Тензор Вейля ВЕЙЛЬ служит мерой приливной деформации нашей сферы из свободно падающих частиц (т. е. изменения начальной формы, а не размеров); тогда как тензор Риччи РИЧЧИ служит мерой изменения первоначального объема. Напомним, что ньютоновская теория гравитации требует, чтобы масса , содержащаяся внутри нашей падающей сферы, была пропорциональна этому изменению первоначального объема. Это означает, что, грубо говоря, плотность массы материи - или, что эквивалентно, плотность энергии (так как Е = mc 2 ) - следует приравнять тензору Риччи.

По существу, это именно то, что утверждают уравнения поля общей теории относительности, а именно - полевые уравнения Эйнштейна . Правда, здесь имеются некоторые технические тонкости, в которые нам сейчас, впрочем, лучше не вдаваться. Достаточно сказать, что существует объект, называемый тензором энергии-импульса , который объединяет всю существенную информацию об энергии, давлении и импульсе материи и электромагнитных полей. Я буду называть этот тензор ЭНЕРГИЕЙ . Тогда уравнения Эйнштейна весьма схематично можно представить в следующем виде,

РИЧЧИ = ЭНЕРГИЯ .

(Именно наличие «давления» в тензоре ЭНЕРГИЯ вместе с некоторыми требованиями непротиворечивости уравнений в целом приводят с необходимостью к учету давления в описанном выше эффекте сокращения объема.)

Кажется, что вышеприведенное соотношение ничего не говорит о тензоре Вейля. Тем не менее, оно отражает одно важное свойство. Приливный эффект, производимый в пустом пространстве, обусловлен ВЕЙЛЕМ . Действительно, из приведенных выше уравнений Эйнштейна следует, что существуют дифференциальные уравнения, связывающие ВЕЙЛЯ с ЭНЕРГИЕЙ - практически как во встречавшихся нам ранее уравнениях Максвелла. Действительно, точка зрения, согласно которой ВЕЙЛЯ надлежит рассматривать как своего рода гравитационный аналог электромагнитного поля (в действительности, тензора - тензора Максвелла), описываемого парой (Е , В ), оказывается весьма плодотворной. В этом случае ВЕЙЛЬ служит своего рода мерой гравитационного поля. «Источником» для ВЕЙЛЯ является ЭНЕРГИЯ - подобно тому, как источником для электромагнитного поля (Е , В ) является (? , j ) - набор из зарядов и токов в теории Максвелла. Эта точка зрения будет полезна нам в главе 7.

Может показаться весьма удивительным, что при столь существенных различиях в формулировке и основополагающих идеях, оказывается довольно трудно найти наблюдаемые различия между теориями Эйнштейна и теорией, выдвинутой Ньютоном двумя с половиной столетиями раньше. Но если рассматриваемые скорости малы по сравнению со скоростью света с , а гравитационные поля не слишком сильны (так, что скорости убегания гораздо меньше с , см. главу 7, «Динамика Галилея и Ньютона»), то теория Эйнштейна по существу дает те же результаты, что и теория Ньютона. Но в тех ситуациях, когда предсказания этих двух теорий расходятся, прогнозы теории Эйнштейна оказываются точнее. К настоящему времени был проведен целый ряд весьма впечатляющих экспериментальных проверок, которые позволяют считать новую теорию Эйнштейна вполне обоснованной. Часы, согласно Эйнштейну, в гравитационном поле идут чуть медленнее. Ныне этот эффект измерен непосредственно несколькими способами. Световые и радиосигналы действительно изгибаются вблизи Солнца и слегка запаздывают для наблюдателя, движущегося им навстречу. Эти эффекты, предсказанные изначально общей теорией относительности, на сегодняшний день подтверждены опытом. Движение космических зондов и планет требуют небольших поправок к ньютоновским орбитам, как это следует из теории Эйнштейна - эти поправки сегодня также проверены опытным путем. (В частности, аномалия в движении планеты Меркурия, известная как «смещение перигелия», беспокоившая астрономов с 1859 года, была объяснена Эйнштейном в 1915 году.) Возможно, наиболее впечатляющим из всего следует считать серию наблюдений над системой, называемой двойным пульсаром , которая состоит из двух небольших массивных звезд (возможно, двух «нейтронных звезд», см. гл.7 «Черные дыры»). Эта серия наблюдений очень хорошо согласуется с теорией Эйнштейна и служит прямой проверкой эффекта, полностью отсутствующего в теории Ньютона, - испускания гравитационных волн . (Гравитационная волна представляет собой аналог электромагнитной волны и распространяется со скоростью света с .) Не существует проверенных наблюдений, которые противоречили бы общей теории относительности Эйнштейна. При всей своей странности (на первый взгляд), теория Эйнштейна работает и по сей день!

Данный текст является ознакомительным фрагментом. Из книги Современная наука и философия: Пути фундаментальных исследований и перспективы философии автора Кузнецов Б. Г.

Из книги Митьковские пляски автора Шинкарёв Владимир Николаевич

Общая теория митьковской пляски 1. НЕДАЛЕКИЕ ИСТОЛКОВАТЕЛИ Ни для кого уже не секрет, что танцы, а, точнее, пляски являются наиболее широко распространенным видом творчества у митьков; это бесспорно. Спорны истолкования феномена митьковской пляски.Недалекие

Из книги Современная наука и философия: Пути фундаментальных исследований и перспективы философии автора Кузнецов Б. Г.

Теория относительности, квантовая механика и начало атомного века В 20– 30-е годы нашего столетия часто говорили о более глубоком воздействии квантовых идей, о более радикальном характере выводов из принципа неопределенности и из квантовой механики в целом по сравнению

Из книги Философский словарь разума, материи, морали [фрагменты] автора Рассел Бертран

107. Общая теория относительности Общая теория относительности (ОТО) – опубликованная в 1915 году, через 10 лет после появления специальной теории (СТО) – была прежде всего геометрической теорией гравитации. Эту часть теории можно считать прочно утвердившейся. Однако, она

Из книги Краткая история философии [Нескучная книга] автора Гусев Дмитрий Алексеевич

108. Специальная теория относительности Специальная теория ставит перед собой задачу сделать законы физики одинаковыми по отношению к любым двум системам координат, движущимся друг относительно друга прямолинейно и равномерно. Здесь необходимо было принять во внимание

Из книги Любители мудрости [Что должен знать современный человек об истории философской мысли] автора Гусев Дмитрий Алексеевич

12.1. Со скоростью света… (Теория относительности) Появление второй научной картины мира было связано в первую очередь со сменой геоцентризма гелиоцентризмом. Третья научная картина мира отказалась от какого-либо центризма вообще. По новым представлениям Вселенная стала

Из книги Физика и философия автора Гейзенберг Вернер Карл

Теория относительности. Со скоростью света Появление второй научной картины мира было связано в первую очередь со сменой геоцентризма гелиоцентризмом. Третья научная картина мира отказалась от какого-либо центризма вообще. По новым представлениям Вселенная стала

Из книги Далекое будущее Вселенной [Эсхатология в космической перспективе] автора Эллис Джордж

VII. ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ Теория относительности всегда играла в современной физике особо важную роль. В ней впервые была показана необходимость периодического изменения основополагающих принципов физики. Поэтому обсуждение тех проблем, которые были подняты и

Из книги Как-то раз Платон зашел в бар… Понимание философии через шутки автора Каткарт Томас

17.2.1. Общая теория относительности Эйнштейна (ОТО) / космология Большого взрыва В 1915 году Альберт Эйнштейн опубликовал полевые уравнения ОТО, связывающие кривизну пространства–времени с распределенной в пространстве–времени энергией: R?? - ?Rg?? = 8?Т??. В упрощенном

Из книги Хаос и структура автора Лосев Алексей Федорович

17.5.2.3. Текучее время в физике: специальная теория относительности, общая теория относительности, квантовая механика и термодинамика Беглый обзор четырех областей современной физики: специальной теории относительности (СТО), общей теории относительности (ОТО), квантовой

Из книги Удивительная философия автора Гусев Дмитрий Алексеевич

IX Теория относительности Что тут можно сказать? Каждый человек понимает этот термин по-своему. Димитрий: Мой друг, твоя проблема в том, что ты слишком много думаешь.Тассо: По сравнению с кем?Димитрий: Например, по сравнению с Ахиллесом.Тассо: А по сравнению с

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

ОБЩАЯ ТЕОРИЯ ЧИСЛА § 10. Вступление.Число является настолько основной и глубокой категорией бытия и сознания, что для его определения и характеристики можно брать только самые первоначальные, самые отвлеченные моменты того и другого. Математика- наука о числе-есть уже

Из книги Возвращение времени [От античной космогонии к космологии будущего] автора Смолин Ли

Со скоростью света. Теория относительности Появление второй научной картины мира было связано в первую очередь со сменой геоцентризма гелиоцентризмом. Третья научная картина мира отказалась от какого-либо центризма вообще. По новым представлениям Вселенная стала

Из книги Язык, онтология и реализм автора Макеева Лолита Брониславовна

Специальная теория относительности Эйнштейна и Пуанкаре Напомним принцип относительности Галилея, который гласит, что физические законы Ньютона и Галилея останутся совершенно неизменными, если от покоящейся системы отсчета мы перейдем в другую, движущуюся равномерно

Из книги автора

Глава 14 Теория относительности и возвращение времени Итак, признание реальности времени открывает новые подходы к пониманию того, как Вселенная выбирает законы, а также способы разрешения затруднений квантовой механики. Однако нам предстоит еще преодолеть серьезное

Из книги автора

2.4. Теория онтологической относительности и реализм Из тезиса о неопределенности перевода и идеи онтологических обязательств вытекает онтологическая относительность, которая прежде всего означает, что референция является непостижимой, что мы не можем знать, к чему

Кто бы мог подумать, что мелкий почтовый служащий изменит основы науки своего времени? Но такое случилось! Теория относительности Эйнштейна заставила пересмотреть привычный взгляд на устройство Вселенной и открыла новые области научного познания.

Большинство научных открытий сделано с помощью эксперимента: ученые повторяли свои опыты много раз, чтобы быть уверенными в их результатах. Работы обычно проводились в университетах или исследовательских лабораториях больших компаний.

Альберт Эйнштейн полностью изменил научную картину мира, не проведя ни одного практического эксперимента. Его единственными инструментами были бумага и ручка, а все эксперименты он проводил в голове.

Движущийся свет

(1879—1955) основывал все свои выводы но результатах «мысленного эксперимента». Эти эксперименты можно было совершить только в воображении.

Скорости всех движущихся тел относительны. Это означает, что все объекты движутся или остаются неподвижными только относительно какого-либо другого объекта. Например, человек, неподвижный относительно Земли, в то же время вращается вместе с Землей вокруг Солнца. Или допустим, что по вагону движущегося поезда идет человек в сторону движения со скоростью 3 км/час. Поезд движется со скоростью 60 км/час. Относительно неподвижного наблюдателя на земле скорость человека будет равна 63 км/час - скорость человека плюс скорость поезда. Если бы он шел против движения, то его скорость относительно неподвижного наблюдателя была бы равна 57 км/час.

Эйнштейн утверждал, что о скорости света так рассуждать нельзя. Скорость света всегда постоянна , независимо от того, приближается ли источник света к вам, удаляется от вас или стоит на месте.

Чем быстрее, тем меньше

С самого начала Эйнштейн выдвинул несколько удивительных предположений. Он утверждал, что, если скорость объекта приближается к скорости света, его размеры уменьшаются, а масса, наоборот, увеличивается. Никакое тело нельзя разогнать до скорости равной или большей скорости света.

Другой его вывод был еще удивительней и, казалось, противоречил здравому смыслу. Представьте, что из двоих близнецов один остался на Земле, а другой путешествовал по космосу со скоростью, близкой к скорости света. С момента старта на Земле прошло 70 лет. Согласно теории Эйнштейна, на борту корабля время течет медленнее, и там прошло, например, только десять лет. Получается, что тот из близнецов, кто оставался на Земле, стал на шестьдесят лет старше второго. Этот эффект называют «парадоксом близнецов ». Звучит просто невероятно, но лабораторные эксперименты подтвердили, что замедление времени при скоростях, близких к скорости света, действительно существует.

Беспощадный вывод

Теория Эйнштейна также включает известную формулу E=mc 2 , в которой E - энергия, m - масса, а c - скорость света. Эйнштейн утверждал, что масса может превращаться в чистую энергию. В результате применения этого открытия в практической жизни появились атомная энергетика и ядерная бомба .


Эйнштейн был теоретиком. Эксперименты, которые должны были доказать правоту его теории, он оставлял другим. Многие из этих экспериментов было невозможно проделать до тех пор, пока не появились достаточно точные измерительные приборы.

Факты и события

  • Был произведен следующий эксперимент: самолет, на котором были установлены очень точные часы, взлетел и, облетев с большой скоростью вокруг Земли, опустился в той же точке. Часы, находившиеся на борту самолета, на ничтожную долю секунды отстали от часов, которые оставались на Земле.
  • Если в лифте, падающем с ускорением свободного падения, уронить шар, то шар не будет падать, а как бы зависнет в воздухе. Это происходит потому, что шар и лифт падают с одинаковой скоростью.
  • Эйнштейн доказал, что тяготение влияет на геометрические свойства пространства-времени, которое в свою очередь влияет на движение тел в этом пространстве. Так, два тела, начавшие движение параллельно друг другу, в конце концов встретятся в одной точке.

Искривляя время и пространство

Десятью годами позже, в 1915—1916 годах, Эйнштейн построил новую теорию гравитации, названную им общей теорией относительности . Он утверждал, что ускорение (изменение скорости) действует на тела так же, как и сила гравитации. Космонавт не может по своим ощущениям определить, притягивает ли его большая планета, или ракета начала тормозить.


Если космический корабль разгоняется до скорости, близкой к скорости света, то часы на нем замедляются. Чем быстрее движется корабль, тем медленнее идут часы.

Отличия ее от ньютоновской теории тяготения проявляются при изучении космических объектов с огромной массой, например планет или звезд. Эксперименты подтвердили искривление лучей света, проходящих вблизи тел с большой массой. В принципе возможно столь сильное гравитационное поле, что свет не сможет выйти за его пределы. Это явление получило название «черной дыры ». «Черные дыры», по-видимому, обнаружены в составе некоторых звездных систем.

Ньютон утверждал, что орбиты планет вокруг Солнца фиксированы. Теория Эйнштейна предсказывает медленный дополнительный поворот орбит планет, связанный с наличием гравитационного поля Солнца. Предсказание подтвердилось экспериментально. Это было поистине эпохальное открытие. В закон всемирного тяготения сэра Исаака Ньютона были внесены поправки.

Начало гонки вооружений

Работы Эйнштейна дали ключ ко многим тайнам природы. Они оказали влияние на развитие многих разделов физики, от физики элементарных частиц до астрономии - науки о строении Вселенной.

Эйнштейн в своей жизни занимался не только теорией. В 1914 году он стал директором института физики в Берлине. В 1933 году, когда к власти в Германии пришли нацисты, ему, как еврею, пришлось уехать из этой страны. Он переехал в США.

В 1939 году, несмотря на то что он был противником войны, Эйнштейн написал президенту Рузвельту письмо, в котором предупреждал его, что можно сделать бомбу, обладающую огромной разрушительной силой, и что фашистская Германия уже приступила к разработке такой бомбы. Президент отдал распоряжение начать работы. Это положило начало гонке вооружений.

Альберт Эйнштейн. Правдивая история одного еврея

Эйнштейн. А что из себя вообще представляет Эйнштейн? Кто он такой? Есть очень интересная книга В. И. Бояринцева , "Русские и еврейские учёные, мифы и реальность", вышедшая мизерным тиражом, где автор, сам доктор физико-математических наук , внимательно приглядывается к Эйнштейну.

Итак, в детстве Эйнштейн долго учился говорить, в семилетнем возрасте мог лишь повторять короткие фразы. В девять лет Эйнштейн поступил в гимназию и без блеска справлялся со школьной программой. Преподаватели с трудом терпели медлительность его ответов.

Закончить гимназию ему не удалось . Предварительно Эйнштейн получил справку от психиатра о необходимости полугодового отпуска. Но учителя первые поздравили его с воскресением. И прочитали ему приказ об отчислении Эйнштейна (за год до окончания). Но Эйнштейн закончил другую гимназию.

Осенью 1900 года Эйнштейн сдал экзамены в цюрихский Политехникум. Он был серым и неприметным учеником. Отметки Эйнштейна были таковы: дипломная работа – 3,75, общий балл – 4,09 (по пятибальной системе). В Политехникум "гений" Эйнштейн смог поступить только со второй попытки. Лекции таких выдающихся математиков, как Адольф Гурвиц и Герман Минковский его не интересовали. Эйнштейна не видели на лекциях, а экзамены он вообще сдавал с помощью своего приятеля Гроссмана.

После окончания Политехникума Эйнштейн 2 года нигде не работает. Только в течении двух месяцев он преподавал математику в технической школе. Попытки давать частные уроки успеха не имели – подопечных не устраивало его преподавание.

Докторская (кандидатская по российским понятиям) диссертация Эйнштейна "Новое определение размера молекул", посвящённая броуновскому (безпорядочному) движению была признана ошибочной .

Стоит отметить ещё один любопытный факт. К началу 50-х годов биографы умилённо рассказывают, что он освоил английский язык. Воистину безграничный талант! От себя заметим, что к началу 50-х годов Эйнштейн прожил в США "всего-то" 17 лет .

В 1902 году Эйнштейн переселился в Берн и начал работать в патентном бюро (техническим экспертом третьего класса). Он получал массу свежей информации в области науки и спокойно мог с ней работать и пользоваться знаниями других учёных. Было бы желание посмотреть, что и где плохо лежит, а своровать и присвоить себе – дело нехитрое. Студенческие деньки даром для Эйнштейна не пропали: они выработали у него хватку и умение присваивать себе чужие результаты . Особенно в тех случаях, когда нужно было сваливать на других черновую и трудоёмкую работу, которую сам Эйнштейн по причине слабоумия выполнять не мог.

В 1905 году Эйнштейн создал свою специальную теорию относительности (СТО). Но создал он её не с нуля. Изложение материала было без указания идей и результатов, заимствованных из других исследований, без сопоставления полученных результатов с более ранними. Статья не содержала ни одной литературной ссылки. Базовые идеи Эйнштейн взял у Анри Пуанкаре , а математический аппарат заимствовал у Гендрика Лоренца . В научном мире это называется воровством чужих идей, плагиатом .

Ещё одна интересная деталь: не осталось никаких черновиков первых работ Эйнштейна.

После опубликования СТО Пуанкаре однажды встретил Эйнштейна и обвинил его в плагиате и научной непорядочности . Наивный и честный Пуанкаре. Он не знал, что евреи собственность гоя (в том числе и интеллектуальную) считают своей личной собственностью. "Имущество гоя – все равно, что пустыня свободная " (талмуд, Баба Батра, 55). Украсть чужое и выдать за своё – это вершина еврейской гениальности.

Самого же Эйнштейна все время пытаются представить атеистом. Особенно, материалисты. На самом же деле Эйнштейн был верующим иудеем. "Принадлежность к еврейской нации есть дар божий" – его же слова (Г. Себов, "Финал катастрофы", стр. 25). Странные речи для атеиста, каким это всегда пытается сделать пропаганда. И тем более для интернационалиста, каким его пытаются сделать евреи.

После Эйнштейна все патентные бюро мира забиты евреями . Патентные бюро стали воровскими еврейскими притонами по краже идей "низших народов" и выдаче их за свои. Такова еврейская гениальность. Точнее, – наглость. В частности, в советское время во ВНИИГПЭ (Всесоюзный институт государственной экспертизы) не было ни одного работника, хотя бы внешне похоже на русского. "Профессор открывает дверь конференцзала и восклицает: а, преЖИДиум уже собрался". При этом наиболее перспективные предложения становились известными в США и в Израиле . А самим заявителям через полгода-год говорили о безперспективности их предложений, предварительно их украв.

Роль первой славянской жены Эйнштейна – Милевы Марич (сербка по национальности) полностью замалчивается. Однако Милева была сильным физиком и её роль в создании специальной и общей теории относительности достаточно ощутима. Милева Марич в физике была намного умнее Эйнштейна. Все три "эпохальные" статьи Эйнштейна 1905 года были подписаны "Эйнштейн-Марич". Широко известно, что Эйнштейн говорил своим друзьям: "математическую часть работы за меня делает жена " (это относилось только к первым статьям, потом её стали делать помощники Эйнштейна). По целому ряду биографий Эйнштейна проходит издевательское отношение к роли Марич, которая была великолепной домохозяйкой и ученой женщиной: "27-летняя супруга меньше всего служила образцом швейцарской феи домашнего очага, вершиной честолюбия которой является сражение с пылью, молью сором". Мамочка Эйнштейна называла Милеву "скорее грязнюшкой, нежели чистюлей". Правда сам Эйнштейн называл себя "цыганом и бродягой" и не придавал никакого значения своему внешнему виду. Бытовой проблемой Эйнштейна были блохи, которых он занёс с покупкой старого матраса. Сам Эйнштейн шутил: "Чем грязнее нация, тем она выносливее" (видимо, имея в виду себя). С другой стороны Эйнштейн "не мог терпеть пражскую грязь". Кстати, все биографы Эйнштейна отмечают его крайнюю неряшливость и неопрятность гения всех времён и одного народца.

Общую теорию относительности (ОТО) "гений" Эйнштейн "создал" в 1915 году. Естественно, не с нуля, а на базе фундаментальной теории поляка Минковского о 4-х мерном пространстве-времени. Сам Минковский развил идею 4-х мерного пространства Пуанкаре . Фундаментальную формулу Е=mС 2 придумал не Эйнштейн, а Пуанкаре в 1900 году. Он первый заметил, что энергия излучения обладает массой m, равной E/C 2 . А это уравнение приписывается Эйнштейну. Так что в фундаменте даже самых крупных еврейских "гениев" лежит плагиат и наглое воровство.

Место в Бернском патентном бюро в 1902 году Эйнштейн получил благодаря отцу Марсела Гроссмана , у которого был друг – Фридрих Галлер – директор этого бюро.

В 1909 году в Цюрихском университете открылась профессорская вакансия по курсу теоретической физики. На неёе претендовал Фридрих Адлер, учившийся с Эйнштейном в Политехникуме. Адлер отказался от должности в пользу Эйнштейна . Аналогичное место имела история в 1910 году, когда Эйнштейн претендовал на должность профессора Пражского университета. Здесь первым кандидатом был профессор физики Густав Яуманн, который снял свою кандидатуру в пользу Эйнштейна.

С 1910 года сионисты пробивали Эйнштейну Нобелевскую премию. Его имя только два раза не фигурировало в списках кандидатов. С таким упорством продвигали сионистские круги своего кандидата в гении всех времён и одного народца. После многолетней работы Сиона Нобелевская премия была в итоге присуждена Эйнштейну. В июле 1923 года Эйнштейн выехал в Швецию для получения "Шнобелевской" премии.

А вот нечто забавное. Спросите любого "за что Эйнштейну была присуждена Нобелевская премия? ". Примерный ответ будет таков: "за создание теории относительности". Вот и не угадали! Как на самом деле? При всем давлении сионистов Нобелевский комитет отличался консервативностью и не хотел присуждать премию за такую фальсификацию. За развитие чужой гипотезы премию давать Нобелевская комиссия по совести не хотела. 12 лет подряд Нобелевский комитет не хотел присуждать премию за теорию относительности . Присуждение премии было сформулировано так: "Премия присуждается Эйнштейну за открытие закона фотоэлектрического эффекта и за его работы в области теоретической физики ". Занятная формулировочка, не правда ли? А как реально обстояло дело?

А вот так. Сам фотоэлектрический эффект был открыт в 1886 году немцем Генрихом Герцем . Два года спустя, так называемый "внешний фотоэффект" был экспериментально проверен русским физиком Александром Григорьевичем Столетовым , который установил первый закон фотоэффекта (кстати, не называемый "законом Столетова").

Первый закон фотоэффекта звучит так: "максимальный ток насыщения прямо пропорционален падающему лучистому потоку". Столетов скрупулёзно изучал различные стороны фотоэффекта, проводил серию опытов с целью получения зависимости величины фототока от освещения . В своих опытах учёный вплотную подошёл к установлению законов электрических разрядов в газах. Теорию таких явлений построил английский физик Таунсенд , использовав полученные Столетовым результаты. Но Столетову премию не дали, её дали Эйнштейну, который ничем её не заслужил.

А что вообще сделал Эйнштейн? "Великий" еврейский "гений" установил "второй закон фотоэффекта" – "закон Эйнштейна". Он звучит так: "Максимальная энергия фотоэлектронов линейно зависит от частоты падающего света и не зависит от его интенсивности". Вот и все. Таково "эпохальное" содержание "великой еврейской гениальности". Мало того, Эйнштейну также приписывается разъяснение механизма фотоэффекта на основе квантовых представлений о природе света. А на самом деле? Квантовая теория излучения была создана Максом Планком в 1900 году.

Все нападки научного мира на бредовую теорию относительности слабоумного Эйнштейна так же рассматривались, как проявление антисемитизма. С самими противниками теории Эйнштейна поступали круто: одного из них решили обследовать психиатрически, на другого предоставили документы в гестапо по причине якобы еврейского происхождения оппонента Эйнштейна. И это у жидов называется "научным спором".

В 1912 году русский физик Н. А. Умов (1846-1915 гг) опубликовал статью, которой забивал гвоздь в крышку гроба теории относительности. Все материальные изменения (сокращение длины, замедление времени) – всё это лишь кажется наблюдателю, до которого доходят световые волны от обьекта. И никак это не относится к физическому обьекту. Преобразования Лоренца имеют чисто математический характер. И к физической реальности отношения не имеют.

Эта статья была опубликована в немецком журнале "Zeitschrift fuer Physik" на немецком языке. Весь юмор в том, что одесский сборник "Теория Относительности" тут же перепечатывает эту статью, ошибочно приняв фамилию автора – Umow – за немецкую. А самого автора – за сторонника теории относительности. Не узнать фамилии этого физика (кто из студентов технических ВУЗов не знает о "векторе Умова"?), не разобраться в содержании статьи – это надо уметь! Это говорит о многом. Это говорит прежде всего о дремучести и полной некомпетентности сторонников теории Эйнштейна. И ещё это говорит об их неразборчивости в достижении своей цели – "пропихивании" "гениального" Эйнштейна. Ворон к ворону летит.

Кстати, интересная деталь. Берём русского физика А. Г. Столетова. Президент академии наук Великий князь Константин не допускает кандидатуру Столетова до баллотировки в члены Академии, объясняя своё решение "невозможным характером " претендента. Но никто не вопил о русофобии или об ущемлении прав русского (и по праву талантливого) физика. Представьте себе, что такое произошло бы с худоумным Эйнштейном или с каким-нибудь другим евреем. Представляете, если бы какого-нибудь еврея не пустить в члены какой-нибудь академии, объясняя это "невозможным характером" кандидата? Это мгновенно будет рассмотрено как оголтелый пещерный антисемитизм. Вою будет на весь мир!

Эйнштейна евреи расписывают как ярого интернационалиста. С одной стороны Эйнштейн писал: "…отвратительный дух национализма, как я ненавижу это". Это-то он писал. А на деле как? Однажды польский еврей Леопольд Инфельд обратился за помощью к Эйнштейну для поступления в прусское министерство просвещения. Эйнштейн ответил: "Я охотно написал бы вам рекомендательное письмо, но там одни антисемиты. То, что вы физик упрощает дело. Я напишу несколько слов профессору Планку, его рекомендации значат больше, чем моя". "Он сделал это, не зная, имею ли я хоть какое-нибудь представление о физике " – удивлённо пишет Инфельд. Это, конечно, яркий пример борьбы за чистоту науки интернационалиста Эйнштейна.

Отсюда весьма удивителен (хотя нет, неудивителен) факт – все аспиранты и ассистенты Эйнштейна как в Германии , так и в США, были евреи, что составляет для неведающего человека загадку при его интернациональном духе. Хотя на самом деле ничего странного тут нет. Евреи – интернационалисты особого рода. Из числа претендентов на Нобелевские премии, выдвинутых Эйнштейном, 70% были из числа его земляков-евреев, 25% были интернационалисты-пацифисты и 5% составляли прочие.

Весьма характерно, что Эйнштейн поддерживал гомосексуалистов и поставил свою подпись за отмену закона против содомитов. Как сообщил Давид Гринберг, Эйнштейн и писатель-полуеврей Томас Манн под руководством еврея Магнуса Хиршфельда подписали гуманитарную петицию в Рейхстаг (немецкий парламент) в их защиту.

В зените своей славы, когда Эйнштейна подняли на небеса, он сделал свой характерный снимок.

Эйнштейн снялся с идиотской рожей и высунутым до подбородка языком. Этот снимок просто неприличен для любого нормального человека . Кроме Эйнштейна никто из учёных не фотографировался в таком идиотском виде. Нормальный человек, а тем более учёный, свой язык показывать никогда не будет и с такой идиотской рожей сниматься просто постесняется из чувства приличия. Люди не уставали удивляться чудачеству "гения". Этот снимок обошёл весь мир , и сам Эйнштейн его активно рекламировал. Многие ломали и ломают головы: "а в чем суть?". Очень просто. Суть в том, что Эйнштейн показывает свой язык всему человечеству, включая научный мир. Этим снимком он говорит: "как я вас всех сделал, а!?". У жидов наглость – это доблесть. А демонстрация наглости – это величайшая жидовская доблесть. Шут гороховый. Его надо было бы наградить погремушкой. Шуты потому и гороховые, что у них в руках были погремушки с сухими горошинами внутри. Вот и Эйнштейну надо было бы подарить такую погремушку, в другую руку дать ему глобус земного шара с натянутым на него колпаком дурака, на шею повесить медаль "За аферу в физике" и снять на фотоаппарат . И вот только после этого рекламировать. Посмотрите на этот снимок внимательно 10-15 секунд. Легче будет понять всю суть открытий еврейского "гения".

Скорость света, Эйнштейн, теория, факты, Теория струн, математическая модель (Левашов Н.В.)

Почему сегодняшняя Академия Наук не хочет заниматься наукой?

Почему наша наука находится в таком плачевном состоянии?

Более подробную и разнообразную информацию о событиях, происходящих в России, на Украине и в других странах нашей прекрасной планеты, можно получить на Интернет-Конференциях , постоянно проводящихся на сайте «Ключи познания» . Все Конференции – открытые и совершенно безплатные . Приглашаем всех просыпающихся и интересующихся…

Одной из жемчужин научной мысли в тиаре знаний человечества с которой мы вошли в 21й век является Общая Теория Относительности (далее ОТО). Данная теория подтверждена бесчисленными опытами, скажу больше, нет ни одного эксперимента, где наши наблюдения хоть на чуть–чуть, хоть на кропалюшечку отличались бы от предсказаний Общей Теории Относительности. В пределах ее применимости, естественно.

Сегодня я хочу рассказать вам, что же это за зверь такой Общая Теория Относительности. Почему она такая сложная и почему на самом деле она такая простая. Как вы уже поняли, объяснение пойдет на пальцах™ , посему прошу не судить слишком строго за весьма вольные трактовки и не вполне корректные аллегории. Я хочу, чтобы прочитав данное объяснение любой гуманитарий , без багажа знаний дифференциального исчисления и интегрирования по поверхности, смог уяснить себе основы ОТО. В конце концов исторически это одна из первых научных теорий, начинающих уходить вдаль от привычного повседневного человеческого опыта. С ньютоновской механикой все просто, на ее объяснение хватит и трех пальцев - вот сила, вот масса, вот ускорение. Вот яблоко на голову падает (все видели как яблоки падают?), вот ускорение его свободного падения, вот силы на него действующие.

С ОТО не все так просто - искривления пространства, гравитационные замедления времени, черные дыры - все это должно вызывать (и вызывает!) у неподготовленного человека массу смутных подозрений - а не по ушам ли ты мне ездишь, чувачок? Какие–такие искривления пространства? Кто их видел эти искривления, откуда они берутся, как подобное вообще можно себе представить?

Попробуем разобраться.

Как можно понять из названия Общей Теории Относительности, суть ее в том, что в общем–то все в мире относительно. Шутка. Хотя и не очень.

Скорость света это та величина, относительно которой относительны все остальные вещи в мире. Любые системы отсчета равноправны, куда бы они ни двигались, что бы они ни делали, даже крутились бы на месте, даже двигались бы с ускорением (что есть серьезный удар под дых Ньютону с Галилеем, которые думали, что только равномерно и прямолинейно двигающиеся системы отсчета могут быть относительными и равноправными, да и то, лишь в рамках элементарной механики) - все равно, всегда можно найти хитрый трюк (по–научному это называется преобразование координат ), при помощи которого можно будет безболезненно переходить из одной системы отсчета в другую, практически ничего не теряя по пути.

Сделать такой вывод Эйнштейну помог постулат (напомню - логическое утверждение, принимаемое на веру без доказательств в силу своей очевидности) "о равенстве гравитации и ускорения" . (внимание, здесь происходит сильное упрощение формулировок, но в общих чертах все верно - эквивалентность эффектов равноускоренного движения и гравитации находится в самом сердце ОТО).

Доказать сей постулат, или хотя бы мысленно его попробовать на вкус весьма просто. Пожалуйте в "лифт Эйнштейна".

Идея сего мысленного эксперимента в том, что если вас заперли в лифте без окон и дверей, то нет ни малейшего, совершенно ни единого способа узнать, в какой ситуации вы находитесь: или лифт продолжает стоять как и стоял на уровне первого этажа, и на вас (и все остальное содержимое лифта) действует обычная сила притяжения, т.е. сила гравитации Земли, или же всю планету Земля убрали у вас из–под ног, а лифт стал подниматься вверх, с ускорением равным ускорению свободного падения g =9.8м/с 2 .

Что бы вы ни делали, какие бы опыты ни ставили, какие бы измерения окружающих предметов и явлений ни производили - различить эти две ситуации невозможно, и в первом и во втором случае все процессы в лифте будут проходить совершенно одинаково.

Читатель со звездочкой (*) наверняка знает один хитрый выход из этого затруднения. Приливные силы. Если лифт очень (очень–очень) большой, километров 300 в поперечнике, теоретически можно отличить гравитацию от ускорения, измерив силу гравитации (или величину ускорения, мы же пока еще не знаем что есть что) в разных концах лифта. Такой огромный лифт будет чуть–чуть сжиматься приливными силами в поперечнике и чуть–чуть вытягиваться ими же в продольной плоскости. Но это уже пошли хитрости. Если лифт достаточно мал, никаких приливных сил вы обнаружить не сможете. Так что не будем о грустном.

Итого, в достаточно маленьком лифте можно считать, что гравитация и ускорение это одно и то же . Казалось бы мысль очевидная, и даже тривиальная. Чего тут такого нового или сложного, скажете вы, это же и ребенку должно быть понятно! Да, в принципе, ничего сложного. Вовсе не Эйнштейн это придумал, такие вещи были известны гораздо раньше.

Эйнштейн же решил выяснить как будет вести себя луч света в подобном лифте. А вот у этой мысли оказались очень далеко идущие последствия, о которых до 1907го года никто всерьез не задумывался. В смысле, задумывались, если честно, многие, но так глубоко заморочиться решился только один.

Представим себе, что мы посветили в нашем мысленном лифте Эйнштейна фонариком. Луч света вылетел из одной стенки лифта, из точки 0) и полетел параллельно полу в сторону противоположной стенки. Покуда лифт стоит на месте, логично предположить, что луч света ударится в противоположную стенку аккурат напротив начальной точки 0), т.е. прилетит в точку 1). Лучи света же по прямой линии распространяются, в школу все ходили, в школе все это учили и юный Альбертик тоже.

Несложно догадаться, что если лифт поехал вверх, то за время покуда луч летел по кабине, она успеет сместиться чуточку вверх.
И если лифт будет двигаться с равномерным ускорением, то луч попадет на стенку в точке 2), то есть при взгляде со стороны будет казаться, что свет двигался как бы по параболе.

Ну, понято, что на самом деле никакой параболы нет. Луч как летел прямо, так и летит. Просто покуда он летел по своей прямой, лифт успел уехать чуточку наверх, вот нам и кажется , что луч по параболе двигался.

Все утрировано и преувеличенно, конечно. Эксперимент мысленный, от чего свет у нас летает медленно, а лифты ездят быстро. Тут пока все еще ничего особо крутого, это все тоже должно быть понятно любому школьнику. Подобный эксперимент можно провести у себя дома. Только нужно найти "очень медленные лучи" и годные, быстрые лифты.

Но Эйнштейн был реально гений. Сегодня многие его ругают, типа он вообще никто и ничто, сидел в своем патентном бюро, плел свои еврейские заговоры и тырил идеи у настоящих физиков . Большинство из заявляющих такое вообще не понимают кто такой Эйнштейн и что он сделал для науки и человечества.

Эйнштейн же сказал - раз "гравитация и ускорение эквивалентны" (еще раз повторю, он не совсем так сказал, я сознательно утрирую и упрощаю), значит в присутствии поля гравитации (например около планеты Земля) свет тоже полетит не по прямой, а по кривой. Гравитация искривит луч света.

Что само по себе было абсолютной ересью для того времени. Любой крестьянин должен знать, что фотоны - безмассовые частицы. Значит свет ничего "не весит". А потому на гравитацию свету должно быть пофиг, он не должен "притягиваться" Землей, как притягиваются камни, мячики и горы. Если кто помнит формулу Ньютона, гравитация обратно пропорциональна квадрату расстояния между телами и прямо пропорциональна их массам. Если у луча света нет массы (а ее у света действительно нет), значит никакого притяжения быть не должно! Тут современники начали коситься на Эйнштейна с подозрением.

А он, зараза, еще дальше попер. Говорит - не будем ломать крестьянам голову. Поверим древним грекам (привет, древние греки!), пусть свет распространяется как и раньше строго по прямой. Давайте лучше предположим, что само пространство вокруг Земли (и любого тела обладающего массой) гнется. Причем не просто трехмерное пространство, а сразу четырехмерное пространство–время.

Т.е. свет как летел по прямой, так и летит. Только эта прямая теперь нарисована не на плоскости, а лежит на как–бы скомканном полотенце. Да еще и в 3D. А комкает это полотенце как раз близкое присутствие массы. Ну, точнее присутствие энергии–импульса, если быть абсолютно точным.

Все ему - "Альбертик, ты гонишь, завязывай–ка поскорее с опиумом! Потому что ЛСД все еще не изобрели, а на трезвую голову такое точно не выдумаешь! Какое гнутое пространство, что ты мелешь?"

А Эйнштейн такой - "Я вам еще покажу!"

Заперся в своей белой башне (в смысле в патентном бюро) и давай математику под идейки подгонять. 10 лет подгонял, пока не родил вот это:

Точнее это квинтэссенция того, что он родил. В более развернутом варианте там 10 независимых формул, а в полном - две страницы математических символов мелким шрифтом.

Если вы решили взять настоящий курс Общей Теории Относительности, здесь вводная часть заканчивается и далее должны последовать два семестра изучения сурового матана. А чтобы подготовиться к изучению этого матана, нужны еще как минимум три года высшей математики, учитывая, что вы закончили среднюю школу и уже знакомы с дифференциальным и интегральным исчислением.

Положа руку на сердце, матан там не столько сложный, сколько нудный. Тензорное исчисление в псевдоримановом пространстве не сильно замороченная тема для восприятия. Это вам не квантовая хромодинамика, или, упаси Бог, не теория струн. Тут все четко, все логично. Вот вам пространство Римана, вот вам многообразие без разрывов и складок, вот метрический тензор, вот невырожденная матрица, сиди себе формулы выписывай, да индексы балансируй, следя чтобы ковариантные и контравариантные представления векторов с обеих сторон уравнения соответствовали друг другу. Это не сложно. Это долго и нудно.

Но не будем забираться в такие дали и вернемся к нашим пальцам™ . По–нашему, по–простецки формула Эйнштейна означает примерно следующее. Слева от знака "равно" в формуле стоят тензор Эйнштейна плюс ковариантный метрический тензор и космологическая постоянная (Λ). Эта лямбда есть по сути своей темная энергия , которую мы сегодня до сих пор нифига не знаем , но любим и уважаем. А Эйнштейн об этом еще даже и не догадывается. Тут своя интересная история, достойная целого отдельного поста.

В двух словах, все, что стоит слева от знака "равно" показывает, как изменяется геометрия пространства, т.е. как оно гнется и скручивается под действием силы гравитации.

А справа, кроме обычных постоянных вроде π , скорости света c и гравитационной постоянной G находится буковка Т - тензор энергии–импульса. В ламмерских терминах можно считать, что это конфигурация того, как распределена в пространстве масса (точнее энергия, ибо что масса, что энергия, все равно эмце квадрат ) для того, чтобы создавать гравитацию и гнуть ею пространство, дабы соответствовать левой части уравнения.

Вот, в принципе, и вся Общая Теория Относительности на пальцах™ .

материал из книги Стивена Хокинга и Леонарда Млодинова "Кратчайшая история времени"

Относительность

Фундаментальный постулат Эйнштейна, именуемый принципом относительности, гласит, что все законы физики должны быть одинаковыми для всех свободно движущихся наблюдателей независимо от их скорости. Если скорость света постоянная величина, то любой свободно движущийся наблюдатель должен фиксировать одно и то же значение независимо от скорости, с которой он приближается к источнику света или удаляется от него.

Требование, чтобы все наблюдатели сошлись в оценке скорости света, вынуждает изменить концепцию времени. Согласно теории относительности наблюдатель, едущий на поезде, и тот, что стоит на платформе, разойдутся в оценке расстояния, пройденного светом. А поскольку скорость есть расстояние, деленное на время, единственный способ для наблюдателей прийти к согласию относительно скорости света – это разойтись также и в оценке времени. Другими словами, теория относительности положила конец идее абсолютного времени! Оказалось, что каждый наблюдатель должен иметь свою собственную меру времени и что идентичные часы у разных наблюдателей не обязательно будут показывать одно и то же время.

Говоря, что пространство имеет три измерения, мы подразумеваем, что положение точки в нем можно передать с помощью трех чисел – координат. Если мы введем в наше описание время, то получим четырехмерное пространство-время.

Другое известное следствие теории относительности – эквивалентность массы и энергии, выраженная знаменитым уравнением Эйнштейна Е = mс 2 (где Е– энергия, m – масса тела, с – скорость света). Ввиду эквивалентности энергии и массы кинетическая энергия, которой материальный объект обладает в силу своего движения, увеличивает его массу. Иными словами, объект становится труднее разгонять.

Этот эффект существенен только для тел, которые перемещаются со скоростью, близкой к скорости света. Например, при скорости, равной 10% от скорости света, масса тела будет всего на 0,5% больше, чем в состоянии покоя, а вот при скорости, составляющей 90% от скорости света, масса уже более чем вдвое превысит нормальную. По мере приближения к скорости света масса тела увеличивается все быстрее, так что для его ускорения требуется все больше энергии. Согласно теории относительности объект никогда не сможет достичь скорости света, поскольку в данном случае его масса стала бы бесконечной, а в силу эквивалентности массы и энергии для этого потребовалась бы бесконечная энергия. Вот почему теория относительности навсегда обрекает любое обычное тело двигаться со скоростью, меньшей скорости света. Только свет или другие волны, не имеющие собственной массы, способны двигаться со скоростью света.

Искривленное пространство

Общая теория относительности Эйнштейна основана на революционном предположении, что гравитация не обычная сила, а следствие того, что пространство-время не является плоским, как принято было думать раньше. В общей теории относительности пространство-время изогнуто или искривлено помещенными в него массой и энергией. Тела, подобные Земле, движутся по искривленным орбитам не под действием силы, именуемой гравитацией.

Так как геодезическая линия – кратчайшая линия между двумя аэропортами, штурманы ведут самолеты именно по таким маршрутам. Например, вы могли бы, следуя показаниям компаса, пролететь 5966 километров от Нью-Йорка до Мадрида почти строго на восток вдоль географической параллели. Но вам придется покрыть всего 5802 километра, если вы полетите по большому кругу, сперва на северо-восток, а затем постепенно поворачивая к востоку и далее к юго-востоку. Вид этих двух маршрутов на карте, где земная поверхность искажена (представлена плоской), обманчив. Двигаясь «прямо» на восток от одной точки к другой по поверхности земного шара, вы в действительности перемещаетесь не по прямой линии, точнее сказать, не по самой короткой, геодезической линии.

Если траекторию космического корабля, который движется в космосе по прямой линии, спроецировать на двумерную поверхность Земли, окажется, что она искривлена.

Согласно общей теории относительности гравитационные поля должны искривлять свет. Например, теория предсказывает, что вблизи Солнца лучи света должны слегка изгибаться в его сторону под воздействием массы светила. Значит, свет далекой звезды, случись ему пройти рядом с Солнцем, отклонится на небольшой угол, из-за чего наблюдатель на Земле увидит звезду не совсем там, где она в действительности располагается.

Напомним, что согласно основному постулату специальной теории относительности все физические законы одинаковы для всех свободно двигающихся наблюдателей, независимо от их скорости. Грубо говоря, принцип эквивалентности распространяет это правило и на тех наблюдателей, которые движутся не свободно, а под действием гравитационного поля.

В достаточно малых областях пространства невозможно судить о том, пребываете ли вы в состоянии покоя в гравитационном поле или движетесь с постоянным ускорением в пустом пространстве.

Представьте себе, что вы находитесь в лифте посреди пустого пространства. Нет никакой гравитации, никакого «верха» и «низа». Вы плывете свободно. Затем лифт начинает двигаться с постоянным ускорением. Вы внезапно ощущаете вес. То есть вас прижимает к одной из стенок лифта, которая теперь воспринимается как пол. Если вы возьмете яблоко и отпустите его, оно упадет на пол. Фактически теперь, когда вы движетесь с ускорением, внутри лифта все будет происходить в точности так же, как если бы подъемник вообще не двигался, а покоился бы в однородном гравитационном поле. Эйнштейн понял, что, подобно тому как, находясь в вагоне по-езда, вы не можете сказать, стоит он или равномерно движется, так и, пребывая внутри лифта, вы не в состоянии определить, перемещается ли он с постоянным ускорением или находится в однородном гравитационном поле. Результатом этого понимания стал принцип эквивалентности.

Принцип эквивалентности и приведенный пример его проявления будут справедливы лишь в том случае, если инертная масса (входящая во второй закон Ньютона, который определяет, ка-кое ускорение придает телу приложенная к нему сила) и гравитационная масса (входящая в за-кон тяготения Ньютона, который определяет величину гравитационного притяжения) суть одно и то же.

Использование Эйнштейном эквивалентности инертной и гравитационной масс для вывода принципа эквивалентности и, в конечном счете, всей общей теории относительности – это бес-прецедентный в истории человеческой мысли пример упорного и последовательного развития логических заключений.

Замедление времени

Еще одно предсказание общей теории относительности состоит в том, что около массивных тел, таких как Земля, должен замедляться ход времени.

Теперь, познакомившись с принципом эквивалентности, мы можем проследить ход рассуждений Эйнштейна, выполнив другой мысленный эксперимент, который показывает, почему гравитация воздействует на время. Представьте себе ракету, летящую в космосе. Для удобства будем считать, что ее корпус настолько велик, что свету требуется целая секунда, чтобы пройти вдоль него сверху донизу. И наконец, предположим, что в ракете находятся два наблюдателя: один – наверху, у потолка, другой – внизу, на полу, и оба они снабжены одинаковыми часами, ведущими отсчет секунд.

Допустим, что верхний наблюдатель, дождавшись отсчета своих часов, немедленно посылает нижнему световой сигнал. При следующем отсчете он шлет второй сигнал. По нашим условиям понадобится одна секунда, чтобы каждый сигнал достиг нижнего наблюдателя. Поскольку верхний наблюдатель посылает два световых сигнала с интервалом в одну секунду, то и нижний наблюдатель зарегистрирует их с таким же интервалом.

Что изменится, если в этом эксперименте, вместо того чтобы свободно плыть в космосе, ракета будет стоять на Земле, испытывая действие гравитации? Согласно теории Ньютона гравитация никак не повлияет на положение дел: если наблюдатель наверху передаст сигналы с промежутком в секунду, то наблюдатель внизу получит их через тот же интервал. Но принцип эквивалентности предсказывает иное развитие событий. Какое именно, мы сможем понять, если в соответствии с принципом эквивалентности мысленно заменим действие гравитации постоянным ускорением. Это один из примеров того, как Эйнштейн использовал принцип эквивалентности при создании своей новой теории гравитации.

Итак, предположим, что наша ракета ускоряется. (Будем считать, что она ускоряется медленно, так что ее скорость не приближается к скорости света.) Поскольку корпус ракеты движется вверх, первому сигналу понадобится пройти меньшее расстояние, чем прежде (до начала ускорения), и он прибудет к нижнему наблюдателю раньше чем через секунду. Если бы ракета двигалась с постоянной скоростью, то и второй сигнал прибыл бы ровно настолько же раньше, так что интервал между двумя сигналами остался бы равным одной секунде. Но в момент от-правки второго сигнала благодаря ускорению ракета движется быстрее, чем в момент отправки первого, так что второй сигнал пройдет меньшее расстояние, чем первый, и затратит еще меньше времени. Наблюдатель внизу, сверившись со своими часами, зафиксирует, что интервал между сигналами меньше одной секунды, и не согласится с верхним наблюдателем, который утверждает, что посылал сигналы точно через секунду.

В случае с ускоряющейся ракетой этот эффект, вероятно, не должен особенно удивлять. В конце концов, мы только что его объяснили! Но вспомните: принцип эквивалентности говорит, что то же самое имеет место, когда ракета покоится в гравитационном поле. Следовательно, да-же если ракета не ускоряется, а, например, стоит на стартовом столе на поверхности Земли, сигналы, посланные верхним наблюдателем с интервалом в секунду (согласно его часам), будут приходить к нижнему наблюдателю с меньшим интервалом (по его часам). Вот это действительно удивительно!

Гравитация изменяет течение времени. Подобно тому как специальная теория относительности говорит нам, что время идет по-разному для наблюдателей, движущихся друг относительно друга, общая теория относительности объявляет, что ход времени различен для наблюдателей, находящихся в разных гравитационных полях. Согласно общей теории относительности нижний наблюдатель регистрирует более короткий интервал между сигналами, потому что у поверхности Земли время течет медленнее, поскольку здесь сильнее гравитация. Чем сильнее гравитационное поле, тем больше этот эффект.

Наши биологические часы также реагируют на изменения хода времени. Если один из близнецов живет на вершине горы, а другой – у моря, первый будет стареть быстрее второго. В данном случае различие в возрастах будет ничтожным, но оно существенно увеличится, коль скоро один из близнецов отправится в долгое путешествие на космическом корабле, который разгоняется до скорости, близкой к световой. Когда странник возвратится, он будет намного моложе брата, оставшегося на Земле. Этот случай известен как парадокс близнецов, но парадоксом он является только для тех, кто держится за идею абсолютного времени. В теории относительности нет никакого уникального абсолютного времени – для каждого индивидуума имеется своя собственная мера времени, которая зависит от того, где он находится и как движется.

C появлением сверхточных навигационных систем, получающих сигналы от спутников, разность хода часов на различных высотах приобрела практическое значение. Если бы аппаратура игнорировала предсказания общей теории относительности, ошибка в определении местоположения могла бы достигать нескольких километров!

Появление общей теории относительности в корне изменило ситуацию. Пространство и время обрели статус динамических сущностей. Когда перемещаются тела или действуют силы, они вызывают искривление пространства и времени, а структура пространства-времени, в свою очередь, сказывается на движении тел и действии сил. Пространство и время не только влияют на все, что случается во Вселенной, но и сами от всего этого зависят.

Представим себе бесстрашного астронавта, который остается на поверхности коллапсирующей звезды во время катастрофического сжатия. В некоторый момент по его часам, скажем в 11:00, звезда сожмется до критического радиуса, за которым гравитационное поле усиливается настолько, что из него невозможно вырваться. Теперь предположим, что по инструкции астронавт должен каждую секунду по своим часам посылать сигнал космическому кораблю, который находится на орбите на некотором фиксированном расстоянии от центра звезды. Он начинает передавать сигналы в 10:59:58, то есть за две секунды до 11:00. Что зарегистрирует экипаж на борту космического судна?

Ранее, проделав мысленный эксперимент с передачей световых сигналов внутри ракеты, мы убедились, что гравитация замедляет время и чем она сильнее, тем значительнее эффект. Астронавт на поверхности звезды находится в более сильном гравитационном поле, чем его коллеги на орбите, поэтому одна секунда по его часам продлится дольше секунды по часам корабля. Поскольку астронавт вместе с поверхностью движется к центру звезды, действующее на него поле становится все сильнее и сильнее, так что интервалы между его сигналами, принятыми на борту космического корабля, постоянно удлиняются. Это растяжение времени будет очень незначительным до 10:59:59, так что для астронавтов на орбите интервал между сигналами, переданными в 10:59:58 и в 10:59:59, очень ненамного превысит секунду. Но сигнала, отправленного в 11:00, на корабле уже не дождутся.

Все, что произойдет на поверхности звезды между 10:59:59 и 11:00 по часам астронавта, растянется по часам космического корабля на бесконечный период времени. С приближением к 11:00 интервалы между прибытием на орбиту последовательных гребней и впадин испущенных звездой световых волн станут все длиннее; то же случится и с промежутками времени между сигналами астронавта. Поскольку частота излучения определяется числом гребней (или впадин), приходящих за секунду, на космическом корабле будет регистрироваться все более и более низкая частота излучения звезды. Свет звезды станет все больше краснеть и одновременно меркнуть. В конце концов звезда настолько потускнеет, что сделается невидимой для наблюдателей на космическом корабле; все, что останется, – черная дыра в пространстве. Однако действие тяготения звезды на космический корабль сохранится, и он продолжит обращение по орбите.