Экзаменационные билеты по физике. Экзаменационные билеты по физике Экзаменационные билеты по физике теоретические законы

1.Равноускоренное движение. Скорость перемещения.

2.Электрический ток в вакууме и в газах.

3.Задача на фотоэффект.

1. Движение, при котором скорость тела за любые равные промежутки времени изменяются на одну и ту же величину, называется равноускоренным.

Для характеристики этого движения нужно знать скорость тела в данный момент времени или в данной точке траектории, т.е. мгновенную скорость, а также ускорение.

Ускорение - величина равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. Иначе, ускорение-это быстрота изменения скорости:

Отсюда формула мгновенной скорости:

Перемещение при этом движении определяют по формуле:

Скорость -

2.Электрический ток в газах представляет собой направленное движение свободных электронов и ионов. При нормальном давлении и невысоких температурах газы содержат недостаточное для электропроводимости количество ионов и электронов и являются изоляторами. Чтобы сделать газ проводником, его надо ионизировать.

Ток в вакууме. Вакуум-это такое разряжение газа в сосуде, при котором длина свободного пробега заряженных частиц превышает размеры сосуда. Вакуум является изолятором. При нагревании металлического электрода с поверхности металла начинают «испарятся» электроны.

Явление испускания электронов с поверхности нагретых тел называются термоэлектронной эмиссией.

Ток в вакууме представляет собой направленное движение электронов, получаемых за счёт термоэлектронной эмиссии. Термоэлектронная эмиссия лежит в основе работы многих вакуумных приборов.

Билет № 2

    Равномерное движение тела по окружности и его параметры.

    Магнитное поле Вектор магнитной индукции напряжённость магнитного поля.

    Задача по ядерной реакции.

1. ДВИЖЕНИЕ ТЕЛА ПО ОКРУЖНОСТИ

При движении по криволинейной траектории, в том числе по окружности, скорость тела может изменяться как по модулю, так и по направлению. Возможно движение, при котором изменяется только направление скорости, а ее модуль сохраняется постоянным. Такое движение называется равномерным движением по окружности. Радиус, проведенный из центра окружности к телу , описал за время t2 - t1 угол Ф, который называют угловым перемещением

Угловое перемещение измеряют в радианах (рад). Радиан равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу.

Движение точки по окружности повторяется через определенные промежутки времени, равные периоду обращения.

Периодом обращения называют время, в течение которого тело совершает один полный оборот.

Период обозначают буквой Т и измеряют в секундах.

Если за время t тело совершило N оборотов, то период обращения Т равен:

Частотой обращения называют число оборотов тела за одну секунду.

За единицу частоты принят 1 оборот в секунду, сокращенно - 1с. Эта единица называется герцем (Гц).

Частота и период обращения связаны следующим образом:

Движение тела по окружности характеризуется угловой скоростью.

Угловая скорость - физическая величина, равная отношению углового перемещения к промежутку времени, за которое это перемещение произошло.

Угловая скорость обозначается буквой (омега).

За единицу угловой скорости принимают радиан в секунду (рад/с).

В случае движения тела по окружности эту скорость называют линейной.

Линейная скорость тела, равномерно движущегося по окружности, оставаясь постоянной по модулю, непрерывно изменяется по направлению и в любой точке направлена по касательной к траектории

Линейная скорость обозначается буквой v.

Билет 1.

Вопрос 1. Механическое движение. Относительность движения. Система отсчёта. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение.

Механическим движением называют изменение положения тела (или его частей) относительно других тел. Например, человек едущий на эскалаторе в метро, находится в покое относительно самого эскалатора и перемещается относительно стен туннеля; Гора Эльбрус находится в покое относительно Земли и движется вместе с Землёй относительно Солнца. Из этих примеров видно, что всегда надо указать тело, относительно которого рассматривается движение, его называют телом отсчёта . Система координат, тело отсчёта с которым она связана, и выбранный способ измерения времени образуют систему отсчёта . Рассмотрим два примера. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, а рассчитывая траекторию движения космического корабля на стыковке со станцией, без учёта её размеров не обойтись. Таким образом, иногда размерами тела по сравнению с расстоянием до него можно пренебречь, в этих случаях тело считают материальной точкой. Линию, вдоль которой движется материальная точка, называют траекторией . Длину части траектории между начальным и конечным положением точки называют путем (l). Единица пути – метр.

Механическое движение характеризуется тремя физическими величинами: перемещением, скоростью и ускорением. Направленный отрезок прямой, проведённый из начального положения движущейся точки в её конечное положение, называется перемещением (S). Это величина векторная. Единица перемещения – метр.

Скорость – векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Промежуток времени считается достаточно малым если скорость в течение этого промежутка не менялась. Определяющая формула скорости имеет вид

Единица измерения скорости – м/с. На практике – км/ч. Измеряют скорость спидометром.

Ускорение – векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле

Единица измерения ускорения м/с 2 .

Характеристики механического движения связаны между собой основными кинематическими уравнениями:

.

Предположим, что тело движется без ускорения (самолёт на маршруте), его скорость в течение продолжительного времени не меняется, а=0. Тогда кинематические уравнения будут иметь вид: V=const, S=Vt.

Движение, при котором скорость тела не меняется, т.е. тело за любые равные промежутки времени перемещается на одну и ту же величину, называют равномерным прямолинейным движением .

Во время старта скорость ракеты быстро возрастает, т.е. ускорение а>0, а=const.

В этом случае кинематические уравнения выглядят так:

При таком движении скорость и ускорение имеют одинаковые направления, причём скорость изменяется одинаково за любые равные промежутки времени. Этот вид движения называют равноускоренным .

При торможении автомобиля скорость уменьшается одинаково за любые равные промежутки времени, ускорение меньше нуля; т.к. скорость уменьшается, то уравнение принимает вид:

Такое движение называется равнозамедленным.

Все физические величины, характеризующие движение тела (скорость, ускорение, перемещение), а также вид траектории, могут изменяться при переходе из одной системы к другой, т.е. характер движения зависит от выбора системы отсчёта, в этом и проявляется относительность движения . Например, в воздухе происходит дозаправка самолёта топливом. В системе отсчёта, связанной с самолётом, другой самолёт находится в покое, а в системе отсчёта, связанной с Землёй, оба самолёта находятся в движении. При движении велосипедиста точка колеса в системе отсчёта, связанной с осью, имеет траекторию:

В системе отсчёта, связанной с Землёй вид траектории будет таким:

Билет 2.

Взаимодействие тел. Сила. Второй закон Ньютона.

Простые наблюдения и опыты, например с тележками, приводят к следующим качественным заключениям: а) тело, на которое другие тела не действуют сохраняет свою скорость неизменной, б) Ускорение тела возникает под действием других тел, но зависит и от самого тела; в) действие других тел друг на друга всегда носят характер взаимодействия. Эти выводы подтверждаются при наблюдении явлений в природе, технике, космическом пространстве только в инерциальных системах отсчёта.

Взаимодействия отличаются друг от друга и количественно, и качественно. Например, ясно, что чем больше деформируется пружина, тем больше взаимодействие её витков. Или чем ближе два одноимённых заряда, тем сильнее они будут притягиваться. В простейших случаях взаимодействия количественной характеристикой является сила . Сила – причина ускорения тел по отношению к инерциальной системе отсчёта или их деформации. Сила – это векторная физическая величина, являющаяся мерой ускорения, приобретаемого телами при взаимодействии. Сила характеризуется: а) модулем; б) точкой приложения; в) направлением.

Единица силы – ньютон. Один ньютон – это сила, которая телу массой 1 кг сообщает ускорение 1 м/с 2 в направлении действия этой силы, если другие тела на него не действуют. Равнодействующей нескольких сил называют силу, действие которой эквивалентно действию тех сил, которые она заменяет. Равнодействующая является векторной суммой всех сил, приложенных к телу

R=F 1 +F 2 +…+F n .

Качественно по своим свойствам взаимодействия также различны. Например, электрическое и магнитное взаимодействия связаны с наличием зарядов у частиц либо с движением заряжённых частиц. Наиболее просто рассчитать силы в электродинамике: сила Ампера – F=IlBsina, Сила Лоренца – F=qvBsina, Кулоновская сила –

и гравитационные силы: закон всемирного тяготения - Такие механические силы, как сила упругости и сила трения, возникают в результате электромагнитного взаимодействия. Для их расчёта необходимо использовать формулы: закон Гука – F упр =-kx, сила трения – F тр =-mN.

На основании опытных данных были сформулированы законы Ньютона. Второй закон Ньютона. Ускорение, с которым движется тело, прямо пропорционально равнодействующей всех сил, действующих на тело, обратно пропорционально его массе и направлено также, как и равнодействующая сила: Для решения задач закон часто записывают в виде F=ma.

Билет 3.

Импульс тела. Закон сохранения импульса. Закон сохранения энергии.

Простые наблюдения и опыты доказывают, что покой и движение относительны, скорость тела зависит от выбора системы отсчёта; по второму закону Ньютона независимо от того, находилось ли тело в покое или двигалось, изменение скорости его движения может происходить только при действии силы, т.е. в результате взаимодействия с другими телами. Однако существуют величины, которые могут сохраняться при взаимодействии тел. Это энергия и импульс . Импульсом тела называют векторную физическую величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается p. Единица измерения импульса – кг м/с. Импульс тела равен произведению массы тела на его скорость: p=mv. Направление вектора импульса p совпадает с направлением вектора скорости тела v. Рис.

Для импульса тел выполняется закон сохранения, который справедлив только для замкнутых физических систем. В общем случае замкнутой называют систему, которая не обменивается энергией и массой с телами и полями, не входящими в неё. В механике замкнутой называют систему, на которую не действуют внешние силы или действие этих сил скомпенсировано. В этом случае p 1 =p 2 , где p 1 – начальный импульс системы, а p 2 – конечный. В случае двух тел, входящих в систему, это выражение имеет вид m 1 v 1 +m 2 v 2 =m 1 v 1 ’+m 2 v 2 ’, где m 1 и m 2 – массы тел, v 1 и v 2 – скорости до взаимодействия, v 1 ’ и v 2 ’ – скорости после взаимодействия. Эта формула и является математическим выражением закона сохранения импульса: импульс замкнутой физической системы сохраняется при любых взаимодействиях, происходящих внутри этой системы; т.е. в замкнутой физической системе геометрическая сумма импульсов тел до взаимодействия равна геометрической сумме импульсов этих тел после взаимодействия. В случае не замкнутой системы импульс тел системы не сохраняется. Однако если в системе существует направление, по которому внешние силы не взаимодействуют или их действия скомпенсировано, то сохраняется проекция импульса на это направление. Кроме того, если время взаимодействия мало (выстрел, взрыв, удар), то за это время даже в случае не замкнутой системы внешние силы не значительно изменяют импульсы взаимодействующих тел. Поэтому для практических расчётов в этом случае тоже можно применять закон сохранения импульса.

Экзаменационные билеты по физике
для итоговой аттестации выпускников XI класса
в 2006-2007 учебном году
ПРОФИЛЬНЫЙ УРОВЕНЬ

Билет №1.

1. Механическое движение и его относительность; уравнения прямолинейного равноускоренного движения.

2. Электрический ток. Последовательное и параллельное соединение проводников. Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи.

3. Задача на применение законов сохранения импульса и энергии.


Билет №2.

1. Движение по окружности с постоянной по модулю скоростью; период и частота; центростремительное ускорение.
2. Электрический ток в газах: несамостоятельный разряд в газах; самостоятельный электрический разряд; виды самостоятельного разряда; плазма.
3. Экспериментальное задание: «Измерение длины световой волны на основе наблюдения дифракционного спектра».


Билет №3

1. Первый закон Ньютона: инерциальная система отсчета,
2. Электрический ток в растворах и расплавах электролитов: закон Фарадея; определение заряда одновалентного иона; технические применения электролиза.
3. Экспериментальное задание: «Оценка (расчет) массы воздуха в колбе известного объема».


Билет №4.

1. Второй закон Ньютона: понятие о массе и силе, принцип суперпозиции сил; формулировка второго закона Ньютона.
2. Электрический ток в полупроводниках: зависимость сопротивления полупроводников от внешних условий; собственная проводимость полупроводников; донорные и акцепторные примеси; р-n-переход; полупроводниковые диоды.
3. Задача на применение газовых законов.


Билет №5.

1. Третий закон Ньютона: формулировка третьего закона Ньютона; характеристика сил действия и противодействия: модуль, направление, точка приложения, природа.
2. Магнитное поле: понятие о магнитном поле; магнитная индукция; линии магнитной индукции; магнитный поток; движение заряженных частиц в однородном магнитном поле.
3. Экспериментальное задание: «Измерение (расчет) абсолютной и относительной влажности».


Билет №6.

1. Закон всемирного тяготения. Сила тяжести; вес и невесомость.
2. Закон электромагнитной индукции Фарадея; правило Ленца; явление самоиндукции;
индуктивность; энергия магнитного поля.
3. Задача на применение первого закона термодинамики.


Билет №7.

1. Силы упругости: природа сил упругости; виды упругих деформаций; закон Гука.
2. Колебательный контур. Свободные электромагнитные колебания: затухание свободных колебаний; вывод формулы периода электромагнитных колебаний.
3. Экспериментальное задание: «Измерение фокусного расстояния н оптической силы линзы».


Билет №8.

1 . Силы трения: природа сил трения; коэффициент трения скольжения; закон сухого трения; трение покоя; учет и использование трения в быту и технике.
2. Вынужденные электромагнитные колебания. Переменный ток: генератор переменного тока; мощность переменного тока; действующие значения силы переменного тока и напряжения.
3. Задача на использование закона фотоэффекта.


Билет №9.

1. Равновесие твердых тел: момент силы; условия равновесия твердого тела; устойчивость тел; виды равновесия; принцип минимума потенциальной энергии.
2. Трансформатор: принцип трансформации переменного тока; устройство трансформатора; холостой ход; режим нагрузки; передача электрической энергии.
3. Задача на использование формулы линзы.


Билет №10.

1. Импульс тела. Закон сохранения импульса: импульс тела и импульс силы; выражение второго закона Ньютона с помощью понятий изменения импульса тела и импульса силы; закон сохранения импульса тела; реактивное движение.
2. Электромагнитное поле. Открытие электромагнитных волн: гипотеза Максвелла; опыты Герца.
3. Задача на применение закона радиоактивного распада.


Билет №11.

1. Механическая работа. Мощность. Энергия: кинетическая энергия; потенциальная энергия тела в однородном поле тяготения и энергия упруго деформированного тела; закон сохранения энергии; закон сохранения энергии в механических процессах; границы применимости закона сохранения энергии; работа как мера изменения механической энергии тела.
2. Свет как электромагнитная волна. Скорость света. Интерференция света: опыт Юнга; цвета тонких пленок.
3. Задача на применение закона Кулона.


Билет №12.

1. Закон Паскаля; закон Архимеда; условия плавания тел.
2. Дифракция света: явление дифракции света; явления, наблюдаемые при пропускании света через отверстия малых размеров; дифракция на малом отверстии и от круглого экрана. Дифракционная решетка.
3. Задача на применение закона Ома для полной цепи.


Билет №13.

1. Механические колебания: основные характеристики гармонических колебаний: частота, период, амплитуда; уравнение гармонических колебаний; свободные и вынужденные колебания; резонанс; превращение энергии при колебательном движении.
2. Законы отражения и преломления света; полное внутреннее отражение.
3. Экспериментальное задание: «Измерение (расчет) сопротивления известного резистора на основе прямых измерений силы тока и напряжения с определением относительной погрешности измерения».


Билет №14.

1. Механические волны: распространение колебаний в упругих средах; поперечные или продольные волны; длина волны; связь длины волны со скоростью ее распространения и периодом (частотой); свойство волн; звуковые волны.
2. Линзы; формула тонкой линзы: оптические приборы.
3. Задача на расчет работы и мощности тока, КПД источника тока.


Билет №15.

1. Атомистическая гипотеза строения вещества и ее экспериментальные доказательства. Модель идеального газа. Связь между давлением идеального газа и средней кинетической энергией теплового движения его молекул.
2. Дисперсия и поглощение света; спектроскоп и спектрограф. Спектры.
3. Задача на движение заряженной частицы в магнитном поле.


Билет №16.

1. Температура как мера средней кинетической энергии движения частиц. Абсолютная температура.
2. Различные виды электромагнитных излучений, их свойства и практические применения.
3. Экспериментальное задание: «Измерение ЭДС и внутреннего сопротивления источника тока».


Билет №17.

1. Уравнение состояния идеального газа. Изопроцессы.
2. Гипотеза Планка о квантах; Фотоэффект; опыты А.Г.Столетова; уравнение Эйнштейна для фотоэффекта; фотон.
3. Экспериментальное задание: «Измерение коэффициента трения скольжения на основе
построения графика зависимости силы трения от силы давления».


Билет №18.

1. Насыщенные и ненасыщенные пары; зависимость давления насыщенного пара от температуры; кипение. Влажность воздуха; точка росы, гигрометр, психрометр.
2. Опыт Резерфорда; ядерная модель атома; квантовые постулаты Бора; лазеры.
3. Задача по теме «Кинематика».


Билет №19.

1. Внутренняя энергия и способы ее изменения. Первый закон термодинамики. Применение первого закона термодинамики к изотермическому, изохорному, изобарному и адиабатному процессам.
2. Модели строения атомного ядра; ядерные силы; нуклонная модель ядра; энергия связи ядра.
3. Задача на движение тел с учетом силы трения.


Билет №20.

1. Тепловые машины: основные части и принципы действия тепловых машин; коэффициент полезного действия тепловой машины и пути его повышения; проблемы энергетики и охрана окружающей среды.
2. Радиоактивность; радиоактивные излучения; закон радиоактивного распада.
3. Задача на движение заряженной частицы в электростатическом поле.


Билет №21.

1. Элементарный электрический заряд; два вида электрических зарядов; закон сохранения электрического заряда; закон Кулона.
2. Ядерные реакции: законы сохранения при ядерных реакциях; цепные ядерные реакции; ядерная энергетика; термоядерные реакции.
3. Экспериментальное задание: «Измерение (расчет) показателя преломления вещества на основе прямых измерений углов падения и преломления».


Билет №22.

1. Электрическое поле; напряженность электрического поля; линии напряженности электрического поля; принцип суперпозиции электрических полей.
2. Солнечная система.
3. Задача на расчет параметров колебательного контура.


Билет №23.

1. Работа сил электрического поля. Потенциальность электрического поля. Потенциал и разность потенциалов; эквипотенциальные поверхности. Связь между напряженностью и разностью потенциалов.
2. Звезды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звезд.
3. Экспериментальное задание: «Измерение ускорения свободного падения с использованием законов колебания математического маятника. Сравнение полученного результата с достоверным значением ускорения свободного падения».


Билет №24.

1. Проводники в электрическом поле: электрическое поле внутри проводящего тела; электрическое поле заряженного проводящего шара; диэлектрики в электрическом поле; поляризация диэлектриков.
2. Наша Галактика. Другие галактики.
3. Задача на применение законов Ньютона к системе связанных тел.


Билет №25.

1. Электрическая емкость: электроемкость конденсатора; энергия электрического ноля.
2. «Красное смещение» в спектрах галактик. Современные взгляды на строение и эволюцию Вселенной.
3. Экспериментальное задание: «Измерение потенциальной энергии деформированной пружины на основе построения графика зависимости модуля силы упругости от удлинения пружины».


ОБЩИЕ СВЕДЕНИЯ О ВСТУПИТЕЛЬНЫХ ЭКЗАМЕНАХ ПО ФИЗИКЕ

В РТУ МИРЭА вступительный экзамен по физике проводится в письменной форме (для абитуриентов не сдававших ЕГЭ). В состав экзаменационного билета входят два теоретических вопроса и пять задач. Теоретические вопросы экзаменационных билетов формируются на основе общероссийской программы вступительных экзаменов по физике в технические ВУЗы. Полный перечень таких вопросов приведен ниже.

Следует отметить, что при проведении экзамена основное внимание уделяется глубине понимания материала, а не его механическому воспроизведению. Поэтому ответы на теоретические вопросы желательно в максимальной степени иллюстрировать поясняющими рисунками, графиками и т.д. В приводимых аналитических выражениях должен быть обязательно указан физический смысл каждого из параметров. Не следует подробно описывать эксперименты и опыты, подтверждающие тот или иной физический закон, а можно ограничиться лишь констатацией выводов из них. Если закон имеет аналитическую запись, то следует привести именно ее, не приводя словесную формулировку. При решении задач и ответах на теоретические вопросы векторные величины должны быть снабжены соответствующими значками и из работы абитуриента у проверяющего должно сложится четкое мнение о том, что абитуриент знает разницу между скаляром и вектором.

Глубина излагаемого материала определяется содержанием стандартных учебников для средней школы и пособиями для поступающих в ВУЗы.
При решении задач рекомендуется:

  • привести схематический рисунок, отражающий условия задачи (для большинства физических задач это просто обязательно);
  • ввести обозначения для тех параметров, которые необходимы для решения данной задачи (не забыв указать их физический смысл);
  • записать формулы, выражающие физические законы, используемые для решения данной задачи;
  • провести необходимые математические преобразования и представить ответ в аналитическом виде;
  • в случае необходимости проделать численные расчеты и получить ответ в системе СИ или в тех единицах, которые указаны в условии задачи.

При получении ответа к задаче в аналитическом виде, необходимо проверить размерность полученного выражения, а также, безусловно, приветствуется исследование его поведения в очевидных или предельных случаях.

Из приведенных примеров вступительных заданий видно, что предлагаемые в каждом варианте задачи довольно сильно различаются по сложности. Поэтому максимальное количество баллов, которое можно получить за правильно решенную задачу и теоретический вопрос неодинаково и равно: теоретический вопрос - 10 баллов, задача №3 - 10 баллов, задачи №№ 4, 5, 6 - 15 баллов и задача №7 - 25 баллов.

Таким образом, абитуриент, полностью выполнивший задание, может набрать максимум 100 баллов. При пересчете в 10 бальную оценку, которая и проставляется в экзаменационный лист абитуриента, в настоящее время действует следующая шкала: 19 и менее баллов - “три”, 20÷25 баллов -“четыре”, 26÷40 баллов - “пять”, 41÷55 баллов - “шесть”, 56÷65 баллов - “семь”, 66÷75 баллов -“восемь”, 76÷85 баллов - “девять”, 86÷100 баллов - “десять”. Минимальной положительной оценке соответствовала оценка “четыре”. Заметим, что шкала пересчета может меняться в ту или иную сторону.

При проверке работы абитуриента преподаватель не обязан заглядывать в черновик, и делает он это в исключительных случаях с целью уточнения отдельных вопросов, недостаточно ясных из чистовика.

На экзамене по физике допускается использование непрограммируемого калькулятора. Категорически запрещается использовать любые средства связи и карманные компьютеры.

Продолжительность письменного экзамена по физике составляет четыре астрономических часа (240 минут).

ВОПРОСЫ ВСТУПИТЕЛЬНЫХ ЭКЗАМЕНОВ ПО ФИЗИКЕ

*
Adobe Reader

Вопросы составлены на основе общероссийской программы вступительных экзаменов по физике в вузы.

  1. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Скорость и ускорение.
  2. Закон сложения скоростей материальной точки в различных системах отсчета. Зависимость скорости и координат материальной точки от времени для случая равноускоренного движения.
  3. Равномерное движение по окружности. Линейная и угловая скорости и связь между ними. Ускорение при равномерном движении тела по окружности (центростремительное ускорение).
  4. Первый закон Ньютона. Инерциальные системы отсчета. Принцип относительности Галилея. Масса. Сила. Равнодействующая сил. Второй закон Ньютона. Третий закон Ньютона.
  5. Плечо силы. Момент силы. Условие равновесия тел.
  6. Силы упругости. Закон Гука. Сила трения. Трение покоя Трение скольжения. Коэффициент трения скольжения.
  7. Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость. Первая космическая скорость (вывод).
  8. Импульс тела. Импульс силы. Связь между изменением импульса тела и импульсом силы.
  9. Замкнутая система тел. Закон сохранения импульса. Понятие о реактивном движении.
  10. Механическая работа. Мощность, мощность силы. Кинетическая энергия. Связь работы и изменения кинетической энергии тела.
  11. Потенциальные силы. Потенциальная энергия. Связь между работой потенциальных сил и потенциальной энергией. Потенциальная энергия силы тяжести и упругих сил. Закон сохранения механической энергии.
  12. Давление. Закон Паскаля для жидкостей и газов. Сообщающиеся сосуды. Принцип устройства гидравлического пресса. Закон Архимеда для жидкостей и газов. Условие плавания тел на поверхности жидкости.
  13. Основные положения молекулярно-кинетической теории и их опытное обоснование. Молярная масса. Число Авогадро. Количество вещества. Идеальный газ.
  14. Основное уравнение молекулярно-кинетической теории идеального газа. Температура и ее физический смысл. Абсолютная температурная шкала.
  15. Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева). Изотермический, изохорный и изобарный процессы.
  16. Внутренняя энергия. Количество теплоты. Работа в термодинамике. Закон сохранения энергии в тепловых процессах (первый закон термодинамики).
  17. Теплоемкость вещества. Фазовые превращения вещества. Удельная теплота парообразования и удельная теплота плавления. Уравнение теплового баланса.
  18. Принцип действия тепловых двигателей. КПД теплового двигателя и его максимальное значение. Цикл Карно.
  19. Испарение и конденсация. Кипение жидкости. Насыщенные и ненасыщенные пары. Влажность воздуха.
  20. Закон Кулона. Напряженность электрического поля. Электростатическое поле точечного заряда. Принцип суперпозиции полей.
  21. Работа электростатического поля при перемещении заряда. Потенциал и разность потенциалов. Потенциал поля точечного заряда. Связь между напряженностью однородного электростатического поля и разностью потенциалов.
  22. Электроемкость. Конденсаторы. Емкость плоского конденсатора. Энергия, запасенная в конденсаторе, энергия электрического поля.
  23. Емкость батареи последовательно и параллельно соединенных конденсаторов (вывод).
  24. Электрический ток. Сила тока. Закон Ома для участка цепи. Сопротивление металлических проводников. Последовательное и параллельное соединение проводников (вывод).
  25. Электродвижущая сила (ЭДС). Закон Ома для полной цепи. Работа и мощность тока - закон Джоуля-Ленца (вывод).
  26. Индукция магнитного поля. Сила, действующая на проводник с током в магнитном поле. Закон Ампера.
  27. Действие магнитного поля на движущийся заряд. Сила Лоренца. Характер движения заряженной частицы в однородном магнитном поле (скорость частицы ориентирована перпендикулярно вектору индукции).
  28. Действие магнитного поля на движущийся заряд. Сила Лоренца. Характер движения заряженной частицы в однородном магнитном поле (скорость частицы составляет острый угол с вектором индукции магнитного поля).
  29. Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца.
  30. Явление самоиндукции. ЭДС самоиндукции. Индуктивность. Энергия, запасенная в контуре с током.
  31. Свободные электромагнитные колебания в LC-контуре. Превращение энергии в колебательном контуре. Собственная частота колебаний в контуре.
  32. Переменный электрический ток. Получение переменного тока. Действующее значение напряжения и тока. Трансформатор, принцип его действия.
  33. Законы отражения и преломления света. Показатель преломления. Полное внутреннее отражение, предельный угол полного отражения. Построение изображения в плоском зеркале.
  34. Собирающая и рассеивающая линзы. Ход лучей в линзах. Формула тонкой линзы. Построение изображения в собирающей и рассеивающей линзах (по одному характерному случаю для каждой линзы на собственный выбор).
  35. Кванты света. Явление фотоэффекта. Уравнение Эйнштейна для фотоэффекта.
  36. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Постулаты Бора.
  37. Ядерная модель атома. Состав ядра атома. Изотопы. Радиоактивность. Альфа- бета- и гамма-излучение.


ПРИМЕРЫ ЭКЗАМЕНАЦИОННЫХ БИЛЕТОВ

*
*Чтобы скачать файл, нажмите на ссылку правой кнопкой мыши и выберите пункт "Сохранить объект как..."
Для чтения файла необходимо скачать и установить программу

Департамент образования Владимирской области

Профессиональное училище № 51


Практическая часть

К экзаменам по физике


Преподаватель физики:

Караваева А.В.


Билет № 1

Задача на применение закона сохранения массового числа и электрического заряда.

1. При облучении ядер алюминия – 27 жесткими γ-квантами образуются ядра магния – 26. какая частица выделяется в этой реакции? Напишите уравнение ядерной реакции.

2. При облучении ядер некоторого химического элемента протонами образуются ядра натрия-22 и α-частицы (по одной на каждый акт превращения). Какие ядра облучились? Напишите уравнение ядерной реакции.

По периодической системе химических элементов Д.И.Менделеева: ; ; .

3. Напишите уравнение термоядерной реакции и определите ее энергетический выход, если известно, что при слиянии двух ядер дейтерия образуется нейтрон и неизвестное ядро.

Ответ: Е = - 3,3 МэВ


Билет № 2

Лабораторная работа

Измерение показателя преломления стекла.


Оборудование: Стеклянная призма, лампочка, булавки, транспортир, карандаш, линейка, таблица.


Выполнение работы.

α-угол падения

β-угол преломления

α=60 0 , sin α=0,86

β=35 0 , sin β=0,58

n – относительный показатель преломления

;

Вывод: Определили относительный показатель преломления стекла.


Билет № 3

Задача на определение периода и частоты свободных колебаний в колебательном контуре.

1. Вычислите частоту собственных колебаний в контуре, если его индуктивность равна 12 мГн, емкость 0,88 мкФ? А активное сопротивление равно нулю.


α=2х3,14х3х10 8 х

Ответ: α = 3,8 х 10 4 м.


Билет № 4

Задача на применении 1-го закона термодинамики.

1. При нагревании газ в цилиндре расширяется. При этом он толкает поршень, совершая работу 1000 Дж. Определить количество теплоты сообщаемое газу, если внутренняя энергия изменяется на 2500 Дж.


А / = 1000 Дж

Q = 2500+1000=3500 Дж

Ответ: 3500 Дж.

2. При изотермическом расширении газ совершил работу 50 Дж. Найдите изменение его внутренней энергии и количество теплоты, переданное ему в этом процессе.

Ответ: Δ U = 0, Q = 50 Дж.

3. Кислород массой 0,1 кг сжимается адиабатически. Температура газа при этом возрастает от 273 К до 373 К. Чему равно превращение внутренней энергии и работа, совершенная при сжатии газа?


Билет № 5

Лабораторная работа

Расчет и измерение сопротивления 2-х параллельно включенных резисторов.


Оборудование: амперметр, вольтметр, 2 резистора, источник тока, ключ.


Выполнение работы:

R 1 =40 м; R 2 =20 м

R=Ом

Вывод: Определили сопротивление 1-го и 2-го резисторов, общее сопротивление.


Билет № 6

Задача на движение или равновесие заряженной частицы в электрическом поле.

1. Капелька массой 10 -4 г находится в равновесии в электрическом поле с напряженностью 98 Н/Кл. Найти величину заряда капельки.



Билет № 8

Задача на применение уравнения Эйнштейна для фотоэффекта.

1. Определить максимальную кинетическую энергию фотоэлектронов калия при освещении лучами с длиной волны 4х10 -7 м, если работа выхода 2,26 эВ.

2,26 эВ = 2,26 х 1,6х10 -19 Дж = 3,6х10 -19 Дж

Дж≈ 4,97х10 -19 – 3,6х10 -19 ≈ 1,4х10 -19 Дж.

Ответ: 1,4х10 -19 Дж.

2. Работа выхода электронов из кадмия равна 4,08 эВ. Какова длина волны света, падающего на поверхность кадмия, если максимальная скорость фотоэлектронов равна 7,2х10 5 м/с 2 ?


Билет № 9

Лабораторная работа

Определение длины световой волны с помощью дифракционной решетки.


Оборудование: дифракционная решетка, источник света, черный экран с узкой вертикальной щелью посередине.

Выполнение работы

λ – длина волны

d- постоянная решетки

d=0,01 мм = 10 -2 мм = 10 -5 м

b-расстояние по шкале экрана от щели до выбранной лини спектра

к – порядок спектра

а – расстояние от решетки до шкалы

Вывод: Научились определять длину световой волны с помощью дифракционной решетки.


Билет № 10

Задача на определение показателя преломления прозрачной среды.

1. Определите показатель преломления скипидара, если известно, что при угле падения 45 0 угол преломления 30 0 .

Ответ: 1,4.

(рисунок)


Билет № 11

Задача на применение закона электромагнитной индукции.

1. За какой промежуток времени магнитный поток изменится на 0,04 Вб, если в контуре возбуждается ЭДС индукции 16 В?

Δt - ?

Ответ: 2,5х10 -3 .

Ответ: ε= 400 В.



Билет № 12

Лабораторная работа

«Определение ускорения свободного падения при помощи математического маятника»

Оборудование: штатив, математический маятник, секундомер или часы, линейка.

Выполнение работы

g-ускорение свободного падения

l – длина нити

N=50 – число колебаний

Вывод: Экспериментально определили ускорение свободного падения при помощи математического маятника.


Билет № 13

Задача на применение уравнения идеального газа.


Билет № 14

Лабораторная работа

«Определение фокусного расстояния собирающей линзы»


Выполнение работы

F- фокусное расстояние

d- расстояние от предмета до линзы

f-расстояние от изображения до линзы

Д – оптическая сила линзы

м

Вывод: Научились определять фокусное расстояние и оптическую силу собирающей линзы.


Билет № 15

Лабораторная работа

«Измерение влажности воздуха»

Выполнение работы

Психрометр

1. Сухой термометр

2. Влажный термометр

3. Психрометрическая таблица

tc = 20 0 С tвп = 16 0 С

Δt = 20 0 C- 16 0 C=4 0 C

φ=98% - относительная влажность воздуха

Вывод: Научились определять влажность воздуха.


Билет № 16

Задача на применение графиков изопроцессов.

1. На рисунке изображены процессы изменения состояния некоторой массы газа. Назовите эти процессы. Изобразите графики процессов в системе координат Р 1 Т и VT


Р 1 >P 2 T 1 >T 2

... : электроны атомов излучают свет, имеющий линейчатый спектр. Разрешить противоречия планетарной ядерной модели строения атома первым попытался датский физик Нильс Бор. Билет 21. Квантовые постулаты Бора. Испускание и поглощение света атомами, объяснение этих процессов на основе квантовых представлений. Принцип спектрального...

Называются полупроводниками. Они долгое время не привлекали к себе внимания. Одним из первых начал исследования полупроводников выдающийся советский физик Абрам Федорович Иоффе. Полупроводники оказались не просто «плохими проводниками», а особым классом со многими замечательными физическими свойствами, отличающими их как от металлов, так и от диэлектриков. Чтобы понять свойства полупроводников, ...

3. Выполнены действия с наименованиеми. 4. Произведены вычисления. 5. Проведен анализ решения. 6. Решена более простая задача. БИЛЕТ N 5 I. Третий закон Ньютона. Импульс тела. Закон сохранения импульса. Реактивное движение. К.Э.Циолковский - ...

Электрического заряда e на порядковый номер Z химического элемента в таблице Менделеева. Атомы, имеющие одинаковое строение, имеют одинаковую электронную оболочку и химически неразличимы. В ядерной физике применяются свои единицы измерения. 1 ферми – 1 фемтометр, . 1 атомная единица массы – 1/12 массы атома углерода. . Атомы с одинаковым зарядом ядра, но различными массами, называются изотопами...