Теорема геделя о неполноте и существование бога. Интересные факты и полезные советы

Всякая система математических аксиом начиная с определенного уровня сложности либо внутренне противоречива, либо неполна.

В 1900 году в Париже прошла Всемирная конференция математиков, на которой Давид Гильберт (David Hilbert, 1862–1943) изложил в виде тезисов сформулированные им 23 наиважнейшие, по его мнению, задачи, которые предстояло решить ученым-теоретикам наступающего ХХ века. Под вторым номером в его списке значилась одна из тех простых задач, ответ на которые кажется очевидным, пока не копнешь немножечко глубже. Говоря современным языком, это был вопрос: самодостаточна ли математика? Вторая задача Гильберта сводилась к необходимости строго доказать, что система аксиом - базовых утверждений, принимаемых в математике за основу без доказательств, - совершенна и полна, то есть позволяет математически описать всё сущее. Надо было доказать, что можно задать такую систему аксиом, что они будут, во-первых, взаимно непротиворечивы, а во-вторых, из них можно вывести заключение относительно истинности или ложности любого утверждения.

Возьмем пример из школьной геометрии. В стандартной Евклидовой планиметрии (геометрии на плоскости) можно безоговорочно доказать, что утверждение «сумма углов треугольника равна 180°» истинно, а утверждение «сумма углов треугольника равна 137°» ложно. Если говорить по существу, то в Евклидовой геометрии любое утверждение либо ложно, либо истинно, и третьего не дано. И в начале ХХ века математики наивно полагали, что такая же ситуация должна наблюдаться в любой логически непротиворечивой системе.

И тут в 1931 году какой-то венский очкарик - математик Курт Гёдель - взял и опубликовал короткую статью, попросту опрокинувшую весь мир так называемой «математической логики». После долгих и сложных математико-теоретических преамбул он установил буквально следующее. Возьмем любое утверждение типа: «Предположение №247 в данной системе аксиом логически недоказуемо» и назовем его «утверждением A». Так вот, Гёдель попросту доказал следующее удивительное свойство любой системы аксиом:

«Если можно доказать утверждение A, то можно доказать и утверждение не-A».

Иными словами, если можно доказать справедливость утверждения «предположение 247 недоказуемо», то можно доказать и справедливость утверждения «предположение 247 доказуемо». То есть, возвращаясь к формулировке второй задачи Гильберта, если система аксиом полна (то есть любое утверждение в ней может быть доказано), то она противоречива.

Единственным выходом из такой ситуации остается принятие неполной системы аксиом. То есть, приходиться мириться с тем, что в контексте любой логической системы у нас останутся утверждения «типа А», которые являются заведомо истинными или ложными, - и мы можем судить об их истинности лишь вне рамок принятой нами аксиоматики. Если же таких утверждений не имеется, значит, наша аксиоматика противоречива, и в ее рамках неизбежно будут присутствовать формулировки, которые можно одновременно и доказать, и опровергнуть.

Итак, формулировка первой,или слабой теоремы Гёделя о неполноте: «Любая формальная система аксиом содержит неразрешенные предположения». Но на этом Гёдель не остановился, сформулировав и доказав вторую, или сильную теорему Гёделя о неполноте: «Логическая полнота (или неполнота) любой системы аксиом не может быть доказана в рамках этой системы. Для ее доказательства или опровержения требуются дополнительные аксиомы (усиление системы)».

Спокойнее было бы думать, что теоремы Гёделя носят отвлеченный характер и касаются не нас, а лишь областей возвышенной математической логики, однако фактически оказалось, что они напрямую связаны с устройством человеческого мозга. Английский математик и физик Роджер Пенроуз (Roger Penrose, р. 1931) показал, что теоремы Гёделя можно использовать для доказательства наличия принципиальных различий между человеческим мозгом и компьютером. Смысл его рассуждения прост. Компьютер действует строго логически и не способен определить, истинно или ложно утверждение А, если оно выходит за рамки аксиоматики, а такие утверждения, согласно теореме Гёделя, неизбежно имеются. Человек же, столкнувшись с таким логически недоказуемым и неопровержимым утверждением А, всегда способен определить его истинность или ложность - исходя из повседневного опыта. По крайней мере, в этом человеческий мозг превосходит компьютер, скованный чистыми логическими схемами. Человеческий мозг способен понять всю глубину истины, заключенной в теоремах Гёделя, а компьютерный - никогда. Следовательно, человеческий мозг представляет собой что угодно, но не просто компьютер. Он способен принимать решения, и тест Тьюринга пройдет успешно.

Интересно, догадывался ли Гильберт, как далеко заведут нас его вопросы?

Курт ГЁДЕЛЬ
Kurt Gödel, 1906–78

Австрийский, затем американский математик. Родился в г. Брюнн (Brünn, ныне Брно, Чехия). Окончил Венский университет, где и остался преподавателем кафедры математики (с 1930 года - профессором). В 1931 году опубликовал теорему, получившую впоследствии его имя. Будучи человеком сугубо аполитичным, крайне тяжело пережил убийство своего друга и сотрудника по кафедре студентом-нацистом и впал в глубокую депрессию, рецидивы которой преследовали его до конца жизни. В 1930-е годы эмигрировал было в США, но вернулся в родную Австрию и женился. В 1940 году, в разгар войны, вынужденно бежал в Америку транзитом через СССР и Японию. Некоторое время проработал в Принстонском институте перспективных исследований. К сожалению, психика ученого не выдержала, и он умер в психиатрической клинике от голода, отказываясь принимать пищу, поскольку был убежден, что его намереваются отравить.

Комментарии: 0

    Как развивается научная модель в естественных науках? Накапливается житейский либо научный опыт, его вехи аккуратно формулируются в виде постулатов и образуют базу модели: набор утверждений, принимаемых всеми, кто работает в рамках этой модели.

    Анатолий Вассерман

    В 1930 году Курт Гедель доказал две теоремы, которые в переводе с математического языка на человеческий означают примерно следующее: Любая система аксиом, достаточно богатая, чтобы с ее помощью можно было определить арифметику, будет либо не полна, либо противоречива. Не полная система – это значит, что в системе можно сформулировать утверждение, которое средствами этой системы нельзя ни доказать, ни опровергнуть. Но Бог, по определению, есть конечная причина всех причин. С точки зрения математики это означает, что введение аксиомы о Боге делает всю нашу аксиоматику полной. Если есть Бог, значит любое утверждение можно либо доказать, либо опровергнуть, ссылаясь, так или иначе, на Бога. Но по Геделю полная система аксиом неизбежно противоречива. То есть, если мы считаем, что Бог существует, то мы вынуждены прийти к выводу, что в природе возможны противоречия. А поскольку противоречий нет, иначе бы весь наш мир рассыпался от этих противоречий, приходиться прийти к выводу, что существование Бога не совместимо с существованием природы.

    Сосинский А. Б.

    Теорема Гёделя, наряду с открытием теории относительности, квантовой механики и ДНК, обычно рассматривается как крупнейшее научное достижение ХХ века. Почему? В чем ее суть? Каково ее значение? Эти вопросы в своей лекции в рамках проекта «Публичные лекции "Полит.ру"» раскрывает Алексей Брониславович Сосинский, математик, профессор Независимого московского университета, офицер Ордена академических пальм Французской Республики, лауреат премии Правительства РФ в области образования 2012 года. В частности, были даны несколько разных ее формулировок, описаны три подхода к ее доказательству (Колмогорова, Чейтина и самого Гёделя), и объяснено ее значение для математики, физики, компьютерной науки и философии.

    Успенский В. А.

    Лекции летней школы «Современная математика», г. Дубна.

    Успенский В. А.

    Лекция посвящена синтаксической версии Теоремы Гёделя о неполноте. Сам Гёдель доказал синтаксическую версию, используя более сильное, чем непротиворечивость, предположение, а именно так называемую омега-непротиворечивость.

Признаюсь, что саму идею рассмотрения вопроса о существовании бога с этой стороны я вычитал у Анатолия Александровича Вассермана:
http://ru.wikipedia.org/wiki/%D0%90%D0%BD%D0%B0%D1%82%D0%BE%D0%BB%D0%B8%D0%B9_%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80%D0%BE%D0%B2%D0%B8%D1%87_%D0%92%D0%B0%D1%81%D1%81%D0%B5%D1%80%D0%BC%D0%B0%D0%BD#.D0.A0.D0.B5.D0.BB.D0.B8.D0.B3.D0.B8.D0.BE.D0.B7.D0.BD.D1.8B.D0.B5_.D0.B2.D0.B7.D0.B3.D0.BB.D1.8F.D0.B4.D1.8B

Но мне бы хотелось развить эту идею и описать ее немного подробнее.
В религии (как и не в религии) присутствует некоторая аксиоматика построения. По крайней мере в идеальном случае, если это не просто слепое верование, а сознательный и обоснованный выбор. Например, аксиомой физики можно считать "природа познаваема с помощью разума и логических умозаключений, все законы физики одинаковы во всех точках пространства и в любое время". Например, аксиомой религии можно считать высказывание "бог существует и является первопричиной всего сущего". Иначе говоря, нет сомнения, что все многочисленые частности и ответвления можно свести к нескольким важнейшим никак не доказуемым утверждениям, которые и являются теми самыми аксиомами.

Рассмотрим с этих позиций религиозные верования. Важнейшая аксиома религии: "бог существует и является первопричиной всего сущего".
Теперь вспомним одну из важнейших математических теорем, теорему Гёделя.
http://elementy.ru/trefil/21142
Слабая теорема Гёделя: "Любая формальная система аксиом содержит неразрешенные предположения" или "если система аксиом полна, то она противоречива."
Сильная теорема Гёделя: "Логическая полнота (или неполнота) любой системы аксиом не может быть доказана в рамках этой системы. Для ее доказательства или опровержения требуются дополнительные аксиомы (усиление системы)."

Вспомним некоторые определения. Система аксиом полна, если любое утверждение сформулированное для данной системы аксиом доказуемо (то есть является либо истиным, либо ложным). Неразрешенное предположение - такое утверждение, относительно которого не может быть доказана ни его истиность, ни ложность, то есть утверждение логически не доказуемо. Система аксиом противоречива, если относительно одного и того же утверждения можно доказать как его истиность, так и его ложность.

Из теоремы Гёделя следует, что если понятие бога входит в аксиоматическую систему, то эта система не полна, то есть существуют следствия (явления), которые не доказуемы, то есть они могут существовать, а могут не существовать, это не доказуемо.
Но это противоречит следующим двум положениям (выбирайте любое наиболее убедительное): природа не содержит явлений, которые можно считать и существующими и не существующими, любое явление природы либо существует, либо не существует. Второе же положение говорит, что по определению бог является первопричиной всего, следовательно бог либо приводит к существованию некоторых вещей (утверждений), либо к их несуществованию, ссылаясь на бога можно либо доказать, либо опровергнуть любое утверждение. Это противоречит неполноте системы.

Или иначе. Если включить понятие бога в аксиоматическую систему и предположить ее полной (любое утверждение в полной сестеме аксиом доказуемо), то по теореме Гёделя такая система аксиом будет противоречивой, то есть будут существовать явления про которые можно доказать, что они и существуют, и не существуют.

Включать бога в противоречивую систему аксиом нет смысла, так как она противоречива, то есть в ней есть явления, про которые можно доказать, что они и существуют, и не существуют, что, как говорилось, противоречит природе и понятию бога.

Наконец, если понятие бога не входит в аксиоматическую систему, то оно не может считаться фундаментальной основой мироздания, из которой следует все существующее, что по сути противоречит определению бога.

Для справедливости данного доказательства необходимо признание справедливости законов математической логики (логика высказываний + исчисление предикатов), позволяющих устанавливать законы следствия, истиность, ложность, противоречивость, непротиворечивость утверждений и другие свойства и отношения между утверждениями.

Если же считать, что математическая логика не применима к исследованию вопроса существования бога, то следствием будет не возможность исследования этого вопроса с помощью рассуждений, с помощью разума. Иначе говоря, последовательный разум всегда приходит к отрицательному ответу на вопрос существования бога.

Что же получается в итоге... любой хоть сколько-нибудь рациональный человек, конечно, признает справедливость законов логики, а значит неизменно приходит к выводу, что бог в определении "причина всего сущего" не существует. Человек не рациональный, который утверждает, что бога можно познать только с помощью чувств (а не разума), конечно, может так утверждать, однако нету никакого способа убедить в этом другого, чувства не возможно передать. Более того понятие бога является понятием сформулированным разумом. Каким образом предлагается транслировать понятие разума в ощущение, да еще так, чтобы это можно было передать другому человеку - не ясно. Опять же хоть сколько-нибудь рациональный человек скажет, что это не возможно: абстрактное понятие разума перевести в чувство и ощутить его.

Наконец, есть еще один вариант: "бог - не первопричина всего". Тогда подобных противоречий не возникает, однако это является значительнейшим ослаблением позиций религии, так как именно то, что бог создал все, что бог - начало всех начал, является фундаментом для многочисленных утверждений религии и обоснований в спорах.

P.S. Стоит отметить еще одну любопытнейшую вещь, любопытную уже для физиков. В данном определении бога ничего не говорится о его разумности. То есть можно было бы добавить "бог - разумная причина всего сущего", однако это сужение определения, которое изначально и не требуется для доказательства. Без разумности понятие "бога" можно легко заменить на "сингулярность и большой взрыв - причина всего сущего". И ответ будет тот же самый: сингулярность и большой взрыв - не первопричина всего сущего.
Проведя еще большее абстрагирование можно сказать, что ни одно явление или причина не могут являться первопричиной всего сущего, то есть первопричины не существует в принципе. Рассуждая в рамках любой аксиоматики можно прийти к выводу, что первопричины всего не существует. Говоря совсем просто, до каких бы основ мы ни познали вселенную, всегда останутся вопросы в духе: "откуда появился большой взрыв, откуда появилась сингулярность, откуда появилась пульсирующая вселенная, откуда появилась мультивселенная, почему вселенная существует всегда?" и т.п. Первопричину всего не возможно найти в принципе, она не содержится ни в одном объекте, явлении или понятии. Следовательно для человека это эквивалентно ее отсутствию. Теоретически можно предположить существование стороннего наблюдателя за пределами нашей вселенной, который даст ответ на вопрос, откуда все взялось (та самая дополнительная аксиома, расширение в теореме Гёделя), однако тогда возникнет вопрос, откуда взялся сторонний наблюдатель, его вселенная и первопричина всего этого.


доказательство которой нашли только через три с половиной века после первой формулировки (и оно далеко не элементарно). Следует различать истинность высказывания и его доказуемость. Ниоткуда не следует, что не существует истинных, но недоказуемых (и не проверяемых в полной мере) высказываний.

Второй интуитивный довод против ТГН более тонок. Допустим, у нас есть какое-то недоказуемое (в рамках данной дедуктики) высказывание. Что мешает нам принять его в качестве новой аксиомы? Тем самым мы чуть усложним нашу систему доказательств, но это не страшно. Этот довод был бы совершенно верен, если бы недоказуемых высказываний было конечное число. На практике же может произойти следующее - после постулирования новой аксиомы вы наткнётесь на новое недоказуемое высказывание. Примете его в качестве ещё аксиомы - наткнётесь на третье. И так до бесконечности. Говорят, что дедуктика останется неполной . Мы можем также принять силовые меры, чтобы доказывающий алгоритм заканчивался через конечное число шагов с каким-то результатом для любого высказывания языка. Но при этом он начнёт врать - приводить к истине для неверных высказываний, или ко лжи - для верных. В таких случаях говорят, что дедуктика противоречива . Таким образом, ещё одна формулировка ТГН звучит так: «Существуют языки высказываний, для которых невозможна полная непротиворечивая дедуктика» - отсюда и название теоремы.

Иногда называют «теоремой Гёделя» утверждение о том, что любая теория содержит проблемы, которые не могут быть решены в рамках самой теории и требуют её обобщения. В каком-то смысле это верно, хотя такая формулировка скорее затуманивает вопрос, чем проясняет его.

Замечу также, что если бы речь шла о привычных функциях, отображающих множество вещественных чисел в него же, то «невычислимость» функции никого бы не удивила (только не надо путать «вычислимые функции» и «вычислимые числа» - это разные вещи). Любому школьнику известно, что, скажем, в случае функции вам должно сильно повезти с аргументом, чтобы процесс вычисления точного десятичного представления значения этой функции окончился за конечное число шагов. А скорее всего вы будете вычислять её с помощью бесконечного ряда, и это вычисление никогда не приведёт к точному результату, хотя может подойти к нему как угодно близко - просто потому, что значение синуса большинства аргументов иррационально. ТГН просто говорит нам о том, что даже среди функций, аргументами которой являются строки, а значениями - ноль или единица, невычислимые функции, хотя и совсем по другому устроенные, тоже бывают.

Для дальнейшего опишем «язык формальной арифметики». Рассмотрим класс строк текста конечной длины, состоящих из арабских цифр, переменных (букв латинского алфавита), принимающих натуральные значения, пробелов, знаков арифметических действий, равенства и неравенства, кванторов («существует») и («для любого») и, быть может, каких-то ещё символов (точное их количество и состав для нас неважны). Понятно, что не все такие строки осмысленны (например, « » - это бессмыслица). Подмножество осмысленных выражений из этого класса (то есть строк, которые истинны или ложны с точки зрения обычной арифметики) и будет нашим множеством высказываний.

Примеры высказываний формальной арифметики:


и т.д. Теперь назовём «формулой со свободным параметром» (ФСП) строку, которая становится высказыванием, если в качестве этого параметра подставить в неё натуральное число. Примеры ФСП (с параметром ):


и т.д. Иными словами, ФСП эквивалентны функциям натурального аргумента с булевыми значением.

Обозначим множество всех ФСП буквой . Понятно, что его можно упорядочить (например, сначала выпишем упорядоченные по алфавиту однобуквенные формулы, за ними - двухбуквенные и т.д.; по какому именно алфавиту будет происходить упорядочивание, нам непринципиально). Таким образом, любой ФСП соответствует её номер в упорядоченном списке, и мы будем обозначать её .

Перейдём теперь к наброску доказательства ТГН в такой формулировке:

  • Для языка высказываний формальной арифметики не существует полной непротиворечивой дедуктики.

Доказывать будем от противного.

Итак, допустим, что такая дедуктика существует. Опишем следующий вспомогательный алгоритм , ставящий в соответствие натуральному числу булево значение следующим образом:


Проще говоря, алгоритм приводит к значению ИСТИНА тогда и только тогда, когда результат подстановки в ФСП её собственного номера в нашем списке даёт ложное высказывание.

Тут мы подходим к единственному месту, в котором я попрошу читателя поверить мне на слово.

Очевидно, что, при сделанном выше предположении, любой ФСП из можно сопоставить алгоритм, содержащий на входе натуральное число, а на выходе – булево значение. Менее очевидно обратное утверждение:


Доказательство этой леммы потребовало бы, как минимум, формального, а не интуитивного, определения понятия алгоритма. Однако, если немного подумать, то она довольно правдоподобна. В самом деле, алгоритмы записываются на алгоритмических языках, среди которых есть такие экзотические, как, например, Brainfuck , состоящий из восьми односимвольных слов, на котором, тем не менее, можно реализовать любой алгоритм. Странно было бы, если бы описанный нами более богатый язык формул формальной арифметики оказался бы беднее - хотя, без сомнения, для обычного программирования он не очень подходит.

Пройдя это скользкое место, мы быстро добираемся до конца.

Итак, выше мы описали алгоритм . Согласно лемме, в которую я попросил вас поверить, существует эквивалентная ему ФСП. Она имеет какой-то номер в списке - скажем, . Спросим себя, чему равно ? Пусть это ИСТИНА. Тогда, по построению алгоритма (а значит, и эквивалентной ему функции ), это означает, что результат подстановки числа в функцию - ЛОЖЬ. Аналогично проверяется и обратное: из ЛОЖЬ следует ИСТИНА. Мы пришли к противоречию, а значит, исходное предположение неверно. Таким образом, для формальной арифметики не существует полной непротиворечивой дедуктики. Что и требовалось доказать.

Здесь уместно вспомнить Эпименида (см. портрет в заголовке), который, как известно, заявил, что все критяне - лжецы, сам являясь критянином. В более лаконичной формулировке его высказывание (известное как «парадокс лжеца») можно сформулировать так: «Я лгу». Именно такое высказывание, само превозглашающее свою ложность, мы и использовали для доказательства.

В заключение я хочу заметить, что ничего особенного удивительного ТГН не утверждает. В конце концов, все давно привыкли, что не все числа представимы в виде отношения двух целых (помните, у этого утверждения есть очень изящное доказательство , которому больше двух тысяч лет?). И корнями полиномов с рациональными коэффициентами являются тоже не все числа . А теперь вот выяснилось, что не все функции натурального аргумента вычислимы.

Приведённый набросок доказательства относился к формальной арифметике, но нетрудно понять, что ТГН применима и к многим другим языкам высказываний. Разумеется, не всякие языки таковы. Например, определим язык следующим образом:

  • «Любая фраза китайского языка является верным высказыванием, если она содержится в цитатнике товарища Мао Дзе Дуна, и неверна, если не содержится».

Тогда соответствующий полный и непротиворечивый доказывающий алгоритм (его можно назвать «догматической дедуктикой») выглядит примерно так:

  • «Листай цитатник товарища Мао Дзе Дуна, пока не найдёшь искомое высказывание. Если оно найдено, то оно верно, а если цитатник закончился, а высказывание не найдено, то оно неверно».

Здесь нас спасает то, что любой цитатник, очевидно, конечен, поэтому процесс «доказывания» неминуемо закончится. Таким образом, к языку догматических высказываний ТГН неприменима. Но мы ведь говорили о сложных языках, правда?

Давно интересовался, что собой представляет нашумевшая теорема Гёделя. И чем она полезна для жизни. И наконец смог разобраться.

Самая популярная формулировка теоремы звучит так:
"Всякая система математических аксиом начиная с определенного уровня сложности либо внутренне противоречива, либо неполна ."

На человеческий нематематический язык я перевёл бы это так (аксиома - исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое в основе доказательства других ее положений). В жизни аксиома - это принципы, которым следуют человек, общество, научное направление, государства. У представителей религии аксиомы называются догмами. Следовательно, любые наши принципы, любая система взглядов, начиная с некоторого уровня, становится внутренне противоречива, или неполна. Для того, чтобы убедиться в истинности некоего утверждения, придётся выйти за рамки данной системы взглядов и построить новую. Но она также будет несовершенной. Т.е., ПРОЦЕСС ПОЗНАНИЯ БЕСКОНЕЧЕН. Мир нельзя познать до конца, пока мы не достигнем первоисточника.

"...если считать умение логически рассуждать основной характеристикой человеческого разума или, по крайней мере, главным его инструментом, то теорема Гёделя прямо указывает на ограниченность возможностей нашего мозга. Согласитесь, что человеку, воспитанному на вере в бесконечное могущество мысли, очень трудно принять тезис о пределах ее власти... Многие специалисты полагают, что формально-вычислительные, «аристотелевские» процессы, лежащие в основе логического мышления, составляют лишь часть человеческого сознания. Другая же его область, принципиально «невычислительная», отвечает за такие проявления, как интуиция, творческие озарения и понимание. И если первая половина разума подпадает под гёделевские ограничения, то вторая от подобных рамок свободна... Физик Роджер Пенроуз — пошел еще дальше. Он предположил существование некоторых квантовых эффектов невычислительного характера, обеспечивающих реализацию творческих актов сознания... Одним их многочисленных следствий гипотезы Пенроуза может стать, в частности, вывод о принципиальной невозможности создания искусственного интеллекта на основе современных вычислительных устройств, даже в том случае, если появление квантовых компьютеров приведет к грандиозному прорыву в области вычислительной техники. Дело в том, что любой компьютер может лишь всё более детально моделировать работу формально-логической, «вычислительной» деятельности человеческого сознания, но «невычислительные» способности интеллекта ему недоступны."

Одним из важных следствий теоремы Гёделя является вывод, что нельзя мыслить крайностями. Всегда в рамках существующей теории найдётся утверждение, которое нельзя будет ни доказать, ни опровергнуть. Или, другими словами, всегда к некоторому утверждению найдётся парное, опровергающее его.

Следующий вывод. Добро и зло - это всего лишь 2 стороны одной медали, без которых она не может существовать. А исходит оно из принципа, что во Вселенной есть только один источник всего: добра и зла, любви и ненависти, жизни и смерти.

Любое объявление законченности системы - ложно. Нельзя опираться на догмы, потому что рано или поздно они будут опровергнуты.

В этом смысле, современные религии находятся в критическом положении: догматы церкви противятся развитию наших представлений о мире. Пытаются всё втиснуть в рамки жёстких концепций. Но это приводит к тому, что от Единобожия, от единого источника всех природных процессов они переходят к язычеству, где есть силы добра и силы зла, есть бог добра где-то далеко в небесах, а есть дьявол (бог зла), который давно уже наложил лапу на всё, что есть на Земле. Такой подход приводит к делению всех людей на своих и чужих, на праведников и грешников, на верующих и еретиков, на друзей и врагов.

Вот ещё один небольшой текст , популярно раскрывающий суть, вытекающую из теоремы Гёделя:
"Мне представляется, что это теорема несет важный философский смысл. Возможны лишь два варианта:

а) Теория неполна, т.е. в терминах теории можно сформулировать такой вопрос, на который невозможно вывести из аксиом/постулатов теории ни положительный, ни отрицательный ответ. При этом ответы на все такие вопросы можно дать в рамках более всеобъемлющей теории, в которой старая будет частным случаем. Но эта новая теория будет иметь свои собственные "вопросы без ответов" и так до бесконечности.

б) Полна, но противоречива. Можно ответить на любой вопрос, но на некоторые вопросы можно вывести и положительный и отрицательный ответ одновременно.

Научные теории относятся к первому типу. Они непротиворечивы, но из этого означает, что не описывают все. Не может быть никакой "окончательной" научной теории. Любая теория неполна и что-то не описывает, даже если мы пока не знаем, что именно. Можно только создавать все более и более всеобъемлющие теории. Для меня лично это повод для оптимизма, ведь это означает, что движение науки вперед никогда не остановится.

"Всемогущий бог" относится ко второму типу. Всемогущий бог -- это ответ на любой вопрос. И это автоматически означает, что он приводит к логическому абсурду. Парадоксы подобные "неподъемному камню" можно выдумывать пачками.

В общем, научное знание верно (непротиворечиво), но в любой момент времени описывает не все. При этом ничто не мешает раздвигать границы познанного до бесконечности, все далее и далее и рано или поздно любое непознанное становится познанным. Религия же претендует на полное описание мира "прямо сейчас", но при этом автоматически неверна (абсурдна)."

В своё время, когда я только начинал свою взрослую жизнь, я занимался программированием. И там был такой принцип: если в программу вносится много исправлений, её надо переписать заново. Этот принцип, на мой взгляд, соответствует теореме Гёделя. Если программа усложняется, она становится противоречивой. И работать правильно не будет.

Ещё один пример из жизни. Мы живём в эпоху, когда чиновники заявляют, что главным принципом существования должен быть закон. Т.е., правовая система. Но как только начинается усложнение законодательства и процветание нормотворчества, законы начинают противоречить друг другу. Что мы сейчас и наблюдаем. Никогда нельзя создать такую правовую систему, которая прописала бы все стороны жизни. И с другой стороны, была бы справедливой для всех. Потому что всегда будет вылезать ограниченность нашего представления о мире. И человеческие законы начнут в какой-то момент входить в противоречие с законами Вселенной. Многие вещи мы понимаем интуитивно. Также интуитивно мы должны судить и о поступках других людей. Государству достаточно иметь конституцию. И опираясь на статьи этой конституции, регулировать взаимоотношения в обществе. Но рано или поздно, придётся менять и конституцию.

ЕГЭ - это ещё один пример ошибочности наших представлений о возможностях человека. Мы пытаемся проверять на экзамене вычислительные возможности мозга. Но интуитивные возможности в школе перестали развивать. Но человек - не биоробот. Нельзя создать систему баллов, которая бы смогла выявить все возможности, заложенные в человеке, в его сознании, в его подсознании и в его психике.

Почти 100 лет назад Гёдель сделал невероятной шаг в понимании законов Вселенной. А мы до сих пор не смогли этим воспользоваться, рассматривая эту теорему как узкоспециализированную математическую задачку для узкого же круга людей, занимающихся какими-то отвлечёнными темами в своём кругу. Вместе с квантовой теорией и учением Христа теорема Гёделя даёт возможность нам вырваться из плена ложных догм, преодолеть тот кризис, который пока ещё сохраняется в нашем мировоззрении. А времени остаётся всё меньше.

Идея доказательства заключается в том, чтобы построить такое выражение, которое свидетельствовало бы о своей

собственной недоказуемости. Такое построение может быть выполнено в три этапа:

Первый этап - установление соответствия между формальной арифметикой и множеством целых чисел (гедели-зации);

Второй этап - построение некоторого специального свойства о котором неизвестно, является ли оно теоремой формальной арифметики или нет;

Третий этап - подстановка в вместо х определенного целого числа, связанного с самим т. е. замещение этими числами всех

Первый этап. Геделизация формальной арифметики

Формальная арифметика может быть арифметизирована (т. е. геделизирована) следующим образом: каждой ее теореме ставится в соответствие некоторое число. Однако так как всякое число также является теоремой, то всякая теорема может рассматриваться, с одной стороны, в качестве теоремы формальной арифметики, а с другой - как теорема над множеством теорем формальной арифметики, т. е. в качестве метатеоремы, соответствующей доказательству некой теоремы.

Таким образом, можно сделать вывод, что система формальной арифметики содержит также и свою собственную метасистему.

Теперь более конкретно и подробно изложим полученные результаты.

Во-первых, мы можем связать с каждым символом и формальной арифметики специальное кодовое обозначение, называемое в данном случае геделевым номером

Во-вторых, каждой последовательности символов мы ставим в соответствие тот же геделев номер с помощью некоторой функции композиции Пусть где представляют собой последовательности символов, которые образуют

В-третьих (и это существенно), каждому доказательству последовательности аксиом и правил подстановки (или правил замещения) ставится в соответствие число где обозначает последовательность теорем, используемых при доказательстве

Таким образом, всякому доказательству в формальной арифметике соответствует некоторое число - его геделев номер Всякое рассуждение формальной ариметики преобразуется в вычисления на множестве натуральных чисел.

Итак, вместо того чтобы производить манипуляции с символами, теоремами, доказательствами, можно воспользоваться

вычислениями на множестве целых чисел. Всякое выражение, подобное, например, следующему: доказуемо в формальной арифметике", теперь соответствует определенному числу, которое будем обозначать как

Сформулируем следующее положение.

Формальная метаарифметика содержится в множестве натуральных чисел, а оно само содержится в интерпретации формальной арифметики.

Эта ситуация с формальной арифметикой напоминает ситуацию с естественным языком: ведь нам ничто не мешает использовать его и для того, чтобы формулировать на нем основные его понятия и правила.

Надлежащий выбор функции позволяет осуществить однозначный переход от А к т. е. присвоить два разных числа-номера двум различным доказательствам. Например, можно так выбрать геделевы номера, чтобы каждому символу алфавита формальной арифметики соответствовало свое простое число, как показано, например, в табл. 3.2.

Таблица 3.2

Каждая формула (состоящая из символов изменяющимся от 1 до в свою очередь кодируется последовательностью, состоящей из первых простых чисел, т. е. числом

где простое число.

В свою очередь доказательство, т. е. последовательность из формул будет закодирована аналогичным образом числом

И наоборот, благодаря такому способу построения номеров становится возможным, исходя из некоторого числа, с помощью разложения его на простые множители (в силу единственности разложения натуральных чисел в произведения степеней простых чисел) возвратиться за два шага к показателям степени т. е. к примитивным символам формальной арифметики. Конечно, это имеет в основном лишь теоретическое значение, так как номера быстро становятся слишком большими

для того, чтобы ими можно было манипулировать. Однако следует отметить, что существенным является принципиальная возможность этой операции.

Пример. Пусть задано число Т, соответствующее некоторому доказательству и представляющее собой произведение простых чисел:

Это разложение означает, что доказательство теоремы содержит два этапа: один соответствует числу 1981027125 253, а другой - числу 1981027125 211. Разлагая снова на простые множители каждое из этих чисел, получим

Из таблицы кодирования алфавита формальной арифметики (табл. 3.2) находим, что нашим геделевым номерам для Этих двух чисел

будет соответствовать следующее доказательство:

Из формулы следует формула

Таким образом, в метаарифметике получено значение исходного числа из формальной арифметики.

Второй этап. Лемма Геделя

Всякому числу Т, связанному с доказательством, соответствует теорема доказуемая в формальной арифметике. “Геделизированную” формальную арифметику называют арифметизированной формальной арифметикой. Поскольку каждая аксиома и каждое правило арифметизированной формальной арифметики соответствуют какой-нибудь арифметической операции, то с помощью систенатизированной проверки можно определить, соответствует ли данное число Т доказательству какой-то теоремы Числа Т и образуют в этом случае пару сопряженных чисел. Выражение и являются сопряженными” Представимо внутри самой арифметизированной формальной арифметики. Это означает, что существует геделев номер который выражает в цифровой форме это утверждение.

Мы подошли к критическому пункту доказательства Геделя. Пусть А является выражением арифметизированной формальной арифметики, которое содержит какую-то свободную переменную. Вместо нее можно сделать подстановку какого-нибудь терма. В частности, можно заменить выражение А самим выражением А. В этом случае номер-выражение А выполняет одновременно две различные роли (см. выше построения

Кантора и Ришара): оно одновременно является истинным выражением для подстановки и результирующим термом. Эту специальную подстановку будем обозначать как Так формула означает, что число есть геделев номер, получаемый при выполнении подстановки - к выражению А:

Затем Гедель строит выражение (о котором неизвестно, представляет ли оно собой теорему или не-теорему), в которое вводит эту подстановку. Выражение имеет следующий вид:

Третий этап. Завершающая подстановка

В арифметизированной формальной арифметике это выражение представлено в цифровой форме. Пусть Е - его геделев номер. Так как выражение содержит свободную переменную то мы имеем право выполнить подстановку - над замещая числом Е и обозначая -замещение Е:

Это второе выражение обозначим через а его геделев номер через Е. Дадим интерпретации выражения е.

Первая интерпретация. Не существует такой пары для которой одновременно выполнялось бы следующее: с одной стороны, Т - номер арифметизированного доказательства теоремы арифметизированной ею самой, а с другой - было бы есть замещение Но так как есть такое же преобразование, как и другие, то оно представимо в термах и в их кодовых обозначениях - геделевых номерах и, следовательно, такой номер существует. Тогда, возможно, номер Т не существует.

Вторая интерпретация. Не существует арифметизированного доказательства Т теоремы которое было бы -замещением Е. Итак, если не существует доказательства, то потому, что само по себе не является теоремой. Отсюда вытекает третья интерпретация.

Третья интерпретация. Выражение, для которого геделев номер есть -замещение Е, не является теоремой арифметизированной формальной арифметики. Но в этом и заключается противоречие, так как по построению именно само является -замещением Е и номер есть не что иное по построению, как сам номер Е. Отсюда вытекает последняя интерпретация е.