Уравнения с параметром. Уравнения с параметрами Как решить систему с параметром

Решим систему уравнений с параметром (А. Ларин, вариант 98)

Найдите все значения параметра , при каждом из которых система

имеет ровно одно решение.

Посмотрим внимательно на систему. В первом уравнении системы слева стоит , а правая часть не зависит от параметра. То есть мы можем рассматривать это уравнение как уравнение функции

и можем построить график этой функции.

Второе уравнение системы

зависит от параметра, и, выделив в левой части уравнения полный квадрат, мы получим уравнение окружности.

Так что имеет смысл построить графики каждого уравнения, и посмотреть, при каком значении параметра эти графики имеют одну точку пересечения.

Начнем с первого уравнения. Для начала раскроем модули. Для этого приравняем каждое подмодульное выражение к нулю, чтобы найти точки, в которых происходит смена знака.

Первое подмодульное выражение меняет знак при , второе - при .

Нанесем эти точки на координатную прямую, и найдем знаки каждого подмодульного выражения на каждом промежутке:

Заметим, что при и уравнение не имеет смысла, поэтому эти точки выкалываем.


Теперь раскроем модули на каждом промежутке. (Вспомним: если подмодульное выражение больше или равно нулю, то мы раскрываем модуль с тем же знаком, а если меньше нуля, то с противоположным.)

Оба подмодульных выражения отрицательны, следовательно, оба модуля раскрываем с противоположным знаком:

То есть при исходная функция имеет вид

На этом промежутке первое подмодульное выражение отрицательно, а второе положительно, следовательно получаем:

- на этом промежутке функция не существует.

3. title="x>2">

На этом промежутке оба подмодульных выражения положительны, раскрываем оба модуля с тем же знаком. Получаем:

То есть при title="x>2"> исходная функция имеет вид

Итак, мы получили график функции


Теперь займемся вторым уравнением:

Выделим в левой чаcти уравнения полный квадрат, для этого прибавим к обеим частям уравнения число 4:

При конкретном значении параметра график этого уравнения представляет собой окружность с центром в точке с координатами , радиус которой равен 5. При различных значениях мы имеем серию окружностей:


Будем двигать окружность снизу вверх до тех пор, пока она не коснется левой части графика первой функции. На рисунке эта окружность красного цвета. Центр этой окружности - точка , ее координаты (-2;-3). Дальше при движении вверх окружность имеет одну точку пересечения с левой частью графика функции, то есть система имеет единственное решение.

Продолжаем двигать окружность вверх пока она не коснется правой части графика первой функции. Это произойдет когда центр окружности будет в точке с координатами (-2;0) - на рисунке эта окружность синего цвета.

При движении дальше вверх окружность будет пересекать и левую, и правую части графика первой функции, то есть окружность будет иметь две точки пересечения с графиком первой функции, а система будет иметь два решения. Это ситуация продолжается до тех пор, пока центр окружности не окажется в точке с координатами (-2; 5) - эта окружность зеленого цвета. В этой точке окружность касается левой части графика и пересекает правую. То есть система имеет одно решение.

Итак, система имеет единственное решение при (-3;0].

Ответ: а [ -2, ].

Задание №2. При каких значениях параметров а и b система имеет бесконечно много решений?

Решение.

На координатной плоскости хОу множество точек, удовлетворяющих любому из уравнений системы - прямые. А тогда решением системы будут точки пересечения этих прямых. Поэтому исходная система будет иметь бесконечное множество решений в том и только в том случае, когда эти прямые совпадают. В общем случае две прямые, заданные уравнениями и совпадают, если, и (при они имеют одну точку пересечения, при и точек пересечения у них нет). Следовательно, система будет иметь бесконечно много решений в том случае, когда совместна система

Решая систему, получаем, .

Ответ: , .

Задание №3. При каких значениях параметра а хотя бы при одном значении параметра с система имеет решения для любых значений параметра b ?

Решение.

Если умножить второе уравнение на b и из полученного уравнения вычесть первое уравнение системы, то будем иметь

Если же умножить на b первое уравнение и из полученного уравнения вычесть второе уравнение системы, то

Таким образом, исходная система равносильна системе

При любом система всегда имеет единственное решение. Если же, то система будет иметь решения уравнения

Рассматривая его как квадратное относительно параметра с, приходим к выводу, что оно будет иметь хотя бы одно решение, если и, т.е. если.

При приходим к рассмотрению уравнения

В данном случае решая неравенство, где, находим, что.

Ответ: .

Задание №4. При каких значениях параметра а система имеет четыре решения?

Решение.

Полагая, перепишем систему в виде

Заметим, теперь что если пара является решением системы, то и пара - также решение этой системы. Следовательно, если - решение системы такое, что и, то система будет иметь восемь решений.

Таким образом, исходная система будет иметь четыре решения в следующих двух случаях: , или.

А тогда, если; то. Если же или, то.

Ответ: , .

Задание №5. а , при каждом из которых система имеет единственное решение.

Решение.

Преобразуем исходную систему:

Уравнение задает пару пересекающихся прямых и.

задает части этих прямых, расположенные правее прямой, т.е. лучи DB и CE (без точек B и С ), см. рис.

Уравнение задает прямую m с угловым коэффициентом a , проходящую через точку. Следует найти все значения а , при каждом из которых прямая m имеет единственную общую точку с объединением лучей BD и СЕ .

а) Прямая АB m не пересечет ни луч BD , ни луч СЕ .

б) Прямая АС задается уравнением. Поэтому при прямая m пересечет луч BD , но не пересечет луч СЕ .

в) При прямая m пресечет и луч BD , и луч СЕ .

г) Наконец, при прямая m пересечет только луч СЕ , а при она не пересечет ни луч BD , ни луч СЕ .

Ответ: , .

Задание №6. Найдите все значения параметра a , при каждом из которых система уравнений имеет ровно два решения.

Решение.

Заменим первое уравнение разностью, а второе - суммой исходных уравнений:

При второе уравнение системы, а, значит, и вся система решений не имеет. При получаем:

Ясно (см. рисунок), что при система имеет четыре решения (координаты точек A , B , C и D ), а при - два решения (координаты точек M и N ).

Ответ: .

Заключение

У подрастающего поколения название царицы всех наук на устах. Кому-то вплоть до высшей ступени образования она не дается. Но все в обязательном порядке сдают ЕГЭ по этому предмету. А ЕГЭ по математике не такой уж легкий. Поэтому те, кому остался год или меньше, или больше уже начинают подготовку. И это подтверждает то, что выбранная мной тема исследовательской работы актуальна.

В моей исследовательской работе все фигуры неотрывно связано с планиметрией, но чтобы понять эту науку, нужно знать и о стереометрии. В ходе выполнения работы я узнала важные понятия, формулы к решению задач с определенными фигурами: шар, конус, цилиндр. В решении задач мне помогли такие приемы и методы как: умение выполнять действия с геометрическими фигурами; решение планиметрические задачи на нахождение геометрических величин (длин, углов, площадей); решение простейших стереометрических задач на нахождение геометрических величин (длин, углов, площадей, объемов); изображение пространственных фигур; сечения куба, призмы, пирамиды; площадь треугольника, круга, площадь поверхности конуса, цилиндра; объем цилиндра, конуса, шара. Выбранные мной задачи решались с помощью понятий о той или иной фигуре и формул, что подтверждает мою гипотезу.

Подобные документы

    Стандартные методы решений уравнений и неравенств. Алгоритм решения уравнения с параметром. Область определения уравнения. Решение неравенств с параметрами. Влияние параметра на результат. Допустимые значения переменной. Точки пересечения графиков.

    контрольная работа , добавлен 15.12.2011

    Знакомство с уравнениями и их параметрами. Решение уравнений первой степени с одним неизвестным, определение множества допустимых значений неизвестного. Понятие модуля числа, решение линейных уравнений с модулем и квадратных уравнений с параметром.

    контрольная работа , добавлен 09.03.2011

    Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.

    реферат , добавлен 10.11.2009

    Определение понятия уравнения с параметрами. Принцип решения данных уравнений при общих случаях. Решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями. Девять примеров решения уравнений.

    реферат , добавлен 09.02.2009

    Приближенные числа и действия над ними. Решение систем линейных алгебраических уравнений. Интерполирование и экстраполирование функций. Численное решение обыкновенных дифференциальных уравнений. Отделение корня уравнения. Поиск погрешности результата.

    контрольная работа , добавлен 18.10.2012

    Приближенные значения корней. Метод дихотомии (или деление отрезка пополам), простой итерации и Ньютона. Метод деления отрезка пополам для решения уравнения. Исследование сходимости метода Ньютона. Построение нескольких последовательных приближений.

    лабораторная работа , добавлен 15.07.2009

    Основные определения. Алгоритм решения. Неравенства с параметрами. Основные определения. Алгоритм решения. Это всего лишь один из алгоритмов решения неравенств с параметрами, с использованием системы координат хОа.

    курсовая работа , добавлен 11.12.2002

    Поиск базисного решения для системы уравнений, составление уравнения линии, приведение его к каноническому виду и построение кривой. Собственные значения и векторы линейного преобразования. Вычисление объема тела и вероятности наступления события.

    контрольная работа , добавлен 12.11.2012

    Методы решений иррациональных уравнений. Метод замены переменных. Линейные комбинации двух и более радикалов. Уравнение с одним радикалом. Умножение на сопряженное выражение. Метод решения уравнений путем выделения полных квадратов под знаком радикала.

    контрольная работа , добавлен 15.02.2016

    Численное решение уравнения методом Эйлера и Рунге-Кутта в Excel. Программа на языке Turbo Pascal. Блок-схема алгоритма. Метод Рунге-Кутта для дифференциального уравнения второго порядка. Модель типа "хищник-жертва" с учетом внутривидового взаимодействия.

Уравнение вида f (x ; a ) = 0 называется уравнением с переменной х и параметром а .

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х , удовлетворяющие этому уравнению.

Пример 1. ах = 0

Пример 2. ах = а

Пример 3.

х + 2 = ах
х – ах = -2
х(1 – а) = -2

Если 1 – а = 0, т.е. а = 1, то х 0 = -2 корней нет

Если 1 – а 0, т.е. а 1, то х =

Пример 4.

(а 2 – 1) х = 2а 2 + а – 3
(а – 1)(а + 1)х = 2(а – 1)(а – 1,5)
(а – 1)(а + 1)х = (1а – 3)(а – 1)

Если а = 1, то 0х = 0
х – любое действительное число

Если а = -1, то 0х = -2
Корней нет

Если а 1, а -1, то х = (единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х .

Например:

если а = 5, то х = = ;

если а = 0, то х = 3 и т. д.

Дидактический материал

1. ах = х + 3

2. 4 + ах = 3х – 1

3. а = +

при а = 1 корней нет.

при а = 3 корней нет.

при а = 1 х – любое действительное число, кроме х = 1

при а = -1, а = 0 решений нет.

при а = 0, а = 2 решений нет.

при а = -3, а = 0, 5, а = -2 решений нет

при а = -с , с = 0 решений нет.

Квадратные уравнения с параметром

Пример 1. Решить уравнение

(а – 1)х 2 = 2(2а + 1)х + 4а + 3 = 0

При а = 1 6х + 7 = 0

В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16

20а + 16 = 0

20а = -16

Если а < -4/5, то Д < 0, уравнение имеет действительный корень.

Если а > -4/5 и а 1, то Д > 0,

х =

Если а = 4/5, то Д = 0,

Пример 2. При каких значениях параметра а уравнение

х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

Д = 4(а + 1) 2 – 4(9а – 5) = 4а 2 – 28а + 24 = 4(а – 1)(а – 6)

4(а – 1)(а – 6) > 0

по т. Виета: х 1 + х 2 = -2(а + 1)
х 1 х 2 = 9а – 5

По условию х 1 < 0, х 2 < 0 то –2(а + 1) < 0 и 9а – 5 > 0

В итоге 4(а – 1)(а – 6) > 0
- 2(а + 1) < 0
9а – 5 > 0
а < 1: а > 6
а > - 1
а > 5/9

(Рис. 1 )

< a < 1, либо a > 6

Пример 3. Найдите значения а , при которых данное уравнение имеет решение.

х 2 – 2(а – 1)х + 2а + 1 = 0

Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а

4а 2 – 16 0

4а (а – 4) 0

а(а – 4)) 0

а(а – 4) = 0

а = 0 или а – 4 = 0
а = 4

(Рис. 2 )

Ответ: а 0 и а 4

Дидактический материал

1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3а а 2) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х 2 + х а = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?

5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?

1. При а = - 1/7, а = 0, а = 1

2. При а = 0

3. При а = 2

4. При а = 10

5. При а = - 2

Показательные уравнения с параметром

Пример 1 .Найти все значения а , при которых уравнение

9 х – (а + 2)*3 х-1/х +2а *3 -2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 3 2/х, получим равносильное уравнение

3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)

Пусть 3 х+1/х = у , тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или

(у – 2)(у а ) = 0, откуда у 1 =2, у 2 = а .

Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log 3 2 , или х 2 – х log 3 2 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log 2 3 2 – 4 < 0.

Если у = а , т.е. 3 х+1/х = а то х + 1/х = log 3 а , или х 2 – х log 3 а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log 2 3 2 – 4 > 0, или |log 3 а| > 2.

Если log 3 а > 2, то а > 9, а если log 3 а < -2, то 0 < а < 1/9.

Ответ: 0 < а < 1/9, а > 9.

Пример 2 . При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х 1 = -3, х 2 = а = >

а – положительное число.

Ответ: при а > 0

Дидактический материал

1. Найти все значения а, при которых уравнение

25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4 х - (5а -3)2 х +4а 2 – 3а = 0 имеет единственное решение?

Логарифмические уравнения с параметром

Пример 1. Найти все значения а , при которых уравнение

log 4x (1 + ах ) = 1/2 (1)

имеет единственное решение.

Решение. Уравнение (1) равносильно уравнению

1 + ах = 2х при х > 0, х 1/4 (3)

х = у

ау 2 –у + 1 = 0 (4)

Не выполняется (2) условие из (3).

Пусть а 0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а 0, т.е. при а 1.Чтобы решить неравенство (3), построим графики функций Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа. – М.: Просвещение, 1990

  • Крамор В.С . Повторяем и систематизируем школьный курс алгебры и начал анализа. – М.: Просвещение, 1990.
  • Галицкий М.Л., Гольдман А.М., Звавич Л.И . Сборник задач по алгебре. – М.: Просвещение, 1994.
  • Звавич Л.И., Шляпочник Л.Я. Алгебра и начала анализа. Решение экзаменационных задач. – М.: Дрофа, 1998.
  • Макарычев Ю.Н. и др. Дидактические материалы по алгебре 7, 8, 9 кл. – М.: Просвещение, 2001.
  • Саакян С.И., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа для 10–11-х классов. – М.: Просвещение, 1990.
  • Журналы “Математика в школе”.
  • Л.С. Лаппо и др. ЕГЭ. Учебное пособие. – М.: Экзамен, 2001–2008.